K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 5 2018

a) Đặt \(A=\frac{7^{15}}{1+7+7^2+...+7^{14}}\)

Đặt \(B=1+7+7^2+...+7^{14}\)

\(\Rightarrow7B=7+7^2+...+7^{15}\)

\(\Rightarrow7B-B=6B=7^{15}-1\)

\(\Rightarrow B=\frac{7^{15}-1}{6}\)

\(\Rightarrow A=\frac{7^{15}-1+1}{\frac{7^{15}-1}{6}}=\left(7^{15}-1\right).\frac{6}{7^{15}-1}+\frac{6}{7^{15}-1}=6+\frac{6}{7^{15}-1}\)

Tự làm tiếp nha

21 tháng 5 2018

bạn giải nốt đi

12 tháng 6 2018

b, Ta có:\(\dfrac{1+3+3^2+.....+3^{10}}{1+3+3^2+.....+3^9}\) \(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3+3^2+...+3^{10}}{1+3+3^2+...+3^9}\)\(=\dfrac{1}{1+3+3^2+...+3^9}+\dfrac{3.\left(1+3+3^2+...+3^9\right)}{1+3+3^2+...+3^9}\)

\(=\dfrac{1}{1+3+3^2+...+3^9}+3< 4\)

\(\Rightarrow\) \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< 4\) \(\left(1\right)\)

Ta có :\(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5+5^2+...+5^{10}}{1+5+5^2+....+5^9}\)

\(=\dfrac{1}{1+5+5^2+...+5^9}+\dfrac{5.\left(1+5+5^2+...+5^9\right)}{1+5+5^2+...+5^9}\)

\(=\dfrac{1}{1+5+5^2+...+5^9}+5>5\)

\(\Rightarrow\) \(\dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}>5\) \(\left(2\right)\)

Từ \(\left(1\right)và\left(2\right)\)

\(\Rightarrow\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

Vậy \(\dfrac{1+3+3^2+...+3^{10}}{1+3+3^2+...+3^9}< \dfrac{1+5+5^2+...+5^{10}}{1+5+5^2+...+5^9}\)

12 tháng 6 2018

a, Đặt \(A\)\(=\dfrac{7^{15}}{1+7+7^2+...+7^{14}}\)

\(\Rightarrow\) \(\dfrac{1}{A}\) \(=\dfrac{1+7+7^2+...+7^{14}}{7^{15}}=\dfrac{1}{7^{15}}+\dfrac{7}{7^{15}}+\dfrac{7^2}{7^{15}}+...+\dfrac{7^{14}}{7^{15}}\)

\(=\dfrac{1}{7^{15}}+\dfrac{1}{7^{14}}+\dfrac{1}{7^{13}}+....+\dfrac{1}{7}\)

Đặt \(B=\dfrac{9^{15}}{1+9+9^2+...+9^{14}}\)

\(\Rightarrow\dfrac{1}{B}=\dfrac{1+9+9^2+...+9^{14}}{9^{15}}=\dfrac{1}{9^{15}}+\dfrac{9}{9^{15}}+\dfrac{9^2}{9^{15}}+...+\dfrac{9^{14}}{9^{15}}\)

\(=\dfrac{1}{9^{15}}+\dfrac{1}{9^{14}}+\dfrac{1}{9^{13}}+...+\dfrac{1}{9}\)

\(\dfrac{1}{7^{15}}>\dfrac{1}{9^{15}};\dfrac{1}{7^{14}}>\dfrac{1}{9^{14}};\dfrac{1}{7^{13}}>\dfrac{1}{9^{13}};....;\dfrac{1}{7}>\dfrac{1}{9}\)

\(\Rightarrow\dfrac{1}{A}>\dfrac{1}{B}\) \(\Rightarrow A< B\)

Vậy\(\dfrac{7^{15}}{1+7+7^2+...+7^{14}}>\dfrac{9^{15}}{1+9+9^2+....+9^{14}}\)

2 tháng 7 2019

a)\(\frac{11^4.6-11^5}{11^4-11^5}:\frac{9^8.3-9^9}{9^8.5+9^8.7}\)

\(=1.6:\frac{9^8.3-9^8.9}{9^8.\left(5+7\right)}\)

\(=6:\frac{9^8.\left(3-9\right)}{9^8.12}\)

\(=6:\frac{9^8.\left(-6\right)}{9^8.12}\)

\(=6:\left(-\frac{6}{12}\right)\)

\(=6:\left(-\frac{1}{2}\right)\)

\(=-12\)

b) 3/5 : ( -1/5-1/6)+3/5:(-1/3-16/15) ( mình chuyển về ps luôn )

=3/5: (-11/30) + 3/5 : (-7/5) 

=3/5:[-11/30+(-7/5)]

=3/5:53/30

=18/53

c) (1/2-13/14):5/7-(-2/21+1/7):5/7

= -3/7:5/7-1/21:5/7

=(-3/7-1/21):5/7

=-10/21:5/7

=-2/3

câu b vá c mình làm tắt nha. chúc bạn học tốt

a) A=\(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)

ta có :

 \(A=\left(1-\frac{1}{179}\right)+\left(1-\frac{1}{180}\right)+\left(1+\frac{2}{181}\right)\)

 \(\Rightarrow A=\left(1+1+1\right)-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)\)

\(\Rightarrow A=3-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)< 3\)

Vậy \(A< 3\)

2 tháng 5 2019

a. Ta có :

\(\frac{178}{179}< 1\left(\frac{1}{179}\right)\)

\(\frac{179}{180}< 1\left(\frac{1}{180}\right)\)

\(\frac{183}{181}>1\left(\frac{3}{181}\right)\left(1\right)\)

Mà \(\frac{3}{181}>\frac{1}{179}+\frac{1}{180}\left(=\frac{359}{32220}< \frac{3}{181}\right)\left(2\right)\)

Từ \(\left(1\right)\&\left(2\right)\Rightarrow\frac{178}{179}+\frac{179}{180}+\frac{183}{181}< 1+1+1\)

Vậy \(A< 3\)

25 tháng 3 2019

ta có : A = \(\frac{7^{10}}{1+7+7^2+7^3+...+7^9}=1:\frac{1+7+7^2+7^3+...+7^9}{7^{10}}\)

\(1:\left(\frac{1}{7^{10}}+\frac{7}{7^{10}}+\frac{7^2}{7^{10}}+...+\frac{7^8}{7^{10}}+\frac{7^9}{7^{10}}\right)\)=\(1:\left(\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7^2}+\frac{1}{7}\right)\)

tương tự ta được : B = \(1:\left(\frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5^2}+\frac{1}{5}\right)\)

Vì \(\frac{1}{7^{10}}+\frac{1}{7^9}+\frac{1}{7^8}+...+\frac{1}{7^2}+\frac{1}{7}\)\(\frac{1}{5^{10}}+\frac{1}{5^9}+\frac{1}{5^8}+...+\frac{1}{5^2}+\frac{1}{5}\)

=> A > B 

25 tháng 4 2018

a) x = 99/20

b) x = 7

c) x = 2

( chỉ lm đc đến đó thui nk )

\(M=\frac{\left(-7\right).15.9.15.14}{9.49.7.15}=\frac{-15.2}{7}=\frac{-30}{7}.\)

\(N=\frac{200}{189}+\frac{1}{14}=\)1.12962962963

11 tháng 4 2019

\(M=\left(\frac{-7}{9}\cdot\frac{9}{7}\right)\cdot\left(\frac{15}{49}\cdot\frac{14}{15}\right)\cdot15\)

\(M=\left(-1\right)\cdot\frac{2}{7}\cdot15\)

\(M=\frac{-30}{7}\)

\(N=\frac{5}{9}\cdot\frac{4}{7}\cdot\frac{10}{3}+\frac{3}{9}\cdot\frac{3}{7}\cdot\frac{1}{2}\)

\(N=\frac{200\cdot2}{189\cdot2}+\frac{9\cdot3}{126\cdot3}\)

\(N=\frac{400}{378}+\frac{27}{378}\)

\(N=\frac{61}{51}\)

T i ck nha

2 tháng 1 2018

\(A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}=\frac{1+5\left(1 +5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}=5+\frac{1}{1+5+5^2+...+5^8} \)

\(B=\frac{1+3+3^2+....+3^9}{1+3+3^2+....+3^8}=\frac{1+3\left(1+3+3^2+....+3^8\right)}{1+3+3^2+....+3^8}=3+\frac{1}{1+3+3^2+....+3^8}\)

\(=5+\frac{1}{1+3+3^2+....+3^8}-2\)  

Có: \(\frac{1}{1+5+5^2+...+5^8}>0\)              và      \(\frac{1}{1+3+3^2+....+3^8}-2< 0\)

\(\Rightarrow A>B\)

a) Ta có: \(\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{54}{24}\cdot\frac{56}{21}\)

\(=\frac{16}{15}\cdot\frac{-5}{14}\cdot\frac{9}{4}\cdot\frac{8}{3}\)

\(=4\cdot\frac{-1}{3}\cdot\frac{4}{7}\cdot3\)

\(=12\cdot\frac{-4}{21}=\frac{-48}{21}=\frac{-16}{7}\)

b) Ta có: \(5\cdot\frac{7}{5}=\frac{35}{5}=7\)

c) Ta có: \(\frac{1}{7}\cdot\frac{5}{9}+\frac{5}{9}\cdot\frac{1}{7}+\frac{5}{9}\cdot\frac{3}{7}\)

\(=\frac{5}{9}\left(\frac{1}{7}+\frac{1}{7}+\frac{3}{7}\right)\)

\(=\frac{5}{9}\cdot\frac{5}{7}=\frac{25}{63}\)

d) Ta có: \(4\cdot11\cdot\frac{3}{4}\cdot\frac{9}{121}\)

\(=\frac{4\cdot11\cdot3\cdot9}{4\cdot121}=\frac{27}{11}\)

e) Ta có: \(\frac{3}{4}\cdot\frac{16}{9}-\frac{7}{5}:\frac{-21}{20}\)

\(=\frac{4}{3}+\frac{4}{3}=\frac{8}{3}\)

g) Ta có: \(2\frac{1}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\left(\frac{2}{3}+0,4\cdot5\right)\right]\)

\(=\frac{7}{3}-\frac{1}{3}\cdot\left[\frac{-3}{2}+\frac{2}{3}+2\right]\)

\(=\frac{7}{3}-\frac{1}{3}\cdot\frac{7}{6}\)

\(=\frac{7}{3}-\frac{7}{18}=\frac{42}{18}-\frac{7}{18}=\frac{35}{18}\)

14 tháng 7 2020

thank you,very well