Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: \(=\dfrac{54-34}{189-119}=\dfrac{20}{70}=\dfrac{2}{7}\)
b: \(=\dfrac{6+6\cdot4+6\cdot49}{15+15\cdot4+15\cdot49}=\dfrac{6}{15}=\dfrac{2}{5}\)
c: \(=\dfrac{13\left(3-18\right)}{40\left(15-2\right)}=\dfrac{-15}{40}=-\dfrac{3}{8}\)
1: \(=\dfrac{1}{29\cdot30}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{28\cdot29}\right)\)
\(=\dfrac{1}{29\cdot30}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{28}-\dfrac{1}{29}\right)\)
\(=\dfrac{1}{29\cdot30}-\dfrac{28}{29}=\dfrac{1-28\cdot30}{870}=\dfrac{-859}{870}\)
a.
9920 = (992)10 = (99 . 99)10 < (99 . 101)10 = 999910
Vậy 9920 < 999910
1)
a)
\(19\cdot64+76\cdot3\\ =\left(19\cdot60+19\cdot4\right)+\left(76\cdot30+76\cdot4\right)\\ =1216+2584=3800\)
b)
\(35\cdot12+65\cdot13\\ =\left(35\cdot10+35\cdot2\right)+\left(65\cdot10+65\cdot3\right)\\ =420+845=1265\)
c)
\(27\cdot27-25\cdot29\\ =\left(27\cdot30-27\cdot3\right)-\left(25\cdot30-25\right)\\ =729-725=4\)
b: \(=\dfrac{-5}{7}\left(\dfrac{2}{11}+\dfrac{9}{11}\right)+\dfrac{13}{4}=\dfrac{-5}{7}+\dfrac{13}{4}=\dfrac{-20+91}{28}=\dfrac{71}{28}\)
c: \(=\dfrac{146}{13}-3-\dfrac{68}{13}=6-3=3\)
d: \(=\dfrac{2}{7}\left(\dfrac{21}{4}-\dfrac{13}{4}\right)=\dfrac{4}{7}\)
a) i)\(\frac{7\cdot25-7\cdot7}{7\cdot24+7\cdot3}=\frac{7\left(25-7\right)}{7\left(24+3\right)}=\frac{18}{27}=\frac{2}{3}\) ii)\(\frac{2\cdot\left(-1\right)\cdot13\cdot\left(-3\right)^2\cdot\left(-2\right)\cdot\left(-5\right)}{\left(-3\right)\cdot2\cdot2\cdot\left(-5\right)\cdot13\cdot2}=\frac{-3}{2}\)
b) i)\(\frac{3}{-4}< 0;\frac{-1}{-4}>0=>\frac{3}{-4}< \frac{-1}{-4}\)
ii) ta có \(\frac{15}{17}+\frac{2}{17}=1;\frac{25}{27}+\frac{2}{27}=1\)
mà \(\frac{2}{17}>\frac{2}{27}\) =>\(\frac{15}{17}< \frac{25}{27}\)
Xét hiệu: (a-b+17-3b+a-13-20)+(4b-2a+2+14)=0
<=> a-b+17-3b+a-13-20=-4b+2a-2-14
<=> -(-a+b-17)+(-3b+a-13)-20=-2.(2b-a+1)+(-14) (Đpcm)
\(B=\left|157\dfrac{13}{27}-273\dfrac{7}{19}\right|-96\dfrac{14}{27}+15\dfrac{12}{19}\)
\(=273\dfrac{7}{19}-153\dfrac{13}{27}-96\dfrac{14}{27}+15\dfrac{12}{19}\)
\(=\left(273+15+\dfrac{7}{19}+\dfrac{12}{19}\right)-\left(153+96+\dfrac{13}{27}+\dfrac{14}{27}\right)\)
\(=289-250=39\)
d/ \(B=180^0-\left(A+C\right)=75^0\)
\(\Rightarrow b=c=4,5\)
\(\frac{a}{sinA}=\frac{b}{sinB}\Rightarrow a=\frac{b.sinA}{sinB}=\frac{9}{4}\left(\sqrt{6}-\sqrt{2}\right)\)
e/ \(cosA=\frac{b^2+c^2-a^2}{2bc}\Rightarrow a=\sqrt{b^2+c^2-2bc.cosA}\approx23\)
\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{433}{460}\Rightarrow B\approx19^043'\)
\(\Rightarrow C=180^0-\left(A+B\right)=...\)
f/ \(cosA=\frac{b^2+c^2-a^2}{2bc}=\frac{11}{15}\Rightarrow A\approx42^050'\)
\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{17}{35}\Rightarrow B\approx60^056'\)
\(C=180^0-\left(A+B\right)=...\)
a/ \(cosA=\frac{b^2+c^2-a^2}{2bc}=-\frac{1}{2}\Rightarrow A=120^0\)
\(cosB=\frac{a^2+c^2-b^2}{2ac}=\frac{\sqrt{2}}{2}\Rightarrow B=45^0\)
\(C=180^0-\left(A+B\right)=15^0\)
b/\(A=180^0-\left(B+C\right)=79^037'\)
\(\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\Rightarrow\left\{{}\begin{matrix}b=\frac{sinB}{sinA}.a\approx61\\c=\frac{sinC}{sinA}.a\approx102\end{matrix}\right.\)
c/\(\frac{a}{sinA}=\frac{b}{sinB}\Rightarrow sinB=\frac{bsinA}{a}\approx0,6\Rightarrow B\approx36^052'\)
\(\Rightarrow C=180^0-\left(A+B\right)=75^045'\)
\(\frac{a}{sinA}=\frac{c}{sinC}\Rightarrow c=\frac{a.sinC}{sinA}\approx21\)
a: \(9^{20}=3^{40}>3^{39}=27^{13}\)
b: \(2^{21}=8^7< 9^7=3^{14}\)