Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{2015+2016}{2016+2017}=\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)
\(\frac{2015}{2016}>\frac{2015}{2016+2017}\)
\(\frac{2016}{2017}>\frac{2016}{2016+2017}\)
\(A>B;\frac{2015}{2016}+\frac{2016}{2017}>\frac{2015+2016}{2016+2017}\)
Ta có: \(\frac{x-2019}{2018}+\frac{x-2018}{2017}=\frac{x-2017}{2016}+\frac{x-2016}{2015}\)
\(\Leftrightarrow\left(\frac{x-2019}{2018}+1\right)+\left(\frac{x-2018}{2017}+1\right)=\left(\frac{x-2017}{2016}+1\right)+\left(\frac{x-2016}{2015}+1\right)\)
\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}=\frac{x-1}{2016}+\frac{x-1}{2015}\)
\(\Leftrightarrow\frac{x-1}{2018}+\frac{x-1}{2017}-\frac{x-1}{2016}-\frac{x-1}{2015}=0\)
\(\Leftrightarrow\left(x-1\right)\left(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\right)=0\)
\(\Leftrightarrow x-1=0\)( vì \(\frac{1}{2018}+\frac{1}{2017}-\frac{1}{2016}-\frac{1}{2015}\ne0\))
\(\Leftrightarrow x=1\)
Vạy x=1
Tạm thời chỉ nghĩ ra được cách này -_-
Ta có :
\(A=\frac{2014}{2015}+\frac{2015}{2016}+\frac{2016}{2014}\)
\(A=\frac{2015-1}{2015}+\frac{2016-1}{2016}+\frac{2014+2}{2014}\)
\(A=\frac{2015}{2015}-\frac{1}{2015}+\frac{2016}{2016}-\frac{1}{2016}+\frac{2014}{2014}+\frac{2}{2014}\)
\(A=1-\frac{1}{2015}+1-\frac{1}{2016}+1+\frac{2}{2014}\)
\(A=\left(1+1+1\right)-\left(\frac{1}{2015}+\frac{1}{2016}-\frac{2}{2014}\right)\)
\(A=3-\left[\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(\frac{1}{2014}+\frac{1}{2014}\right)\right]\)
Lại có :
\(\frac{1}{2015}< \frac{1}{2014}\)
\(\frac{1}{2016}< \frac{1}{2014}\)
\(\Rightarrow\)\(\frac{1}{2015}+\frac{1}{2016}< \frac{1}{2014}+\frac{1}{2014}\)
\(\Rightarrow\)\(\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(\frac{1}{2014}+\frac{1}{2014}\right)< 0\)
\(\Rightarrow\)\(A=3-\left[\left(\frac{1}{2015}+\frac{1}{2016}\right)-\left(\frac{1}{2014}+\frac{1}{2014}\right)\right]>3\)
Vậy \(A>3\)
Chúc bạn học tốt ~
Ta có:
\(B=\frac{2015+2016}{2016+2017}=\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)
vì: \(\frac{2015}{2016}>\frac{2015}{2016+2017}\)VÀ \(\frac{2016}{2017}>\frac{2016}{2016+2017}\)
\(\Rightarrow\)\(\frac{2015}{2016}+\frac{2016}{2017}>\frac{2015}{2016+2017}+\frac{2016}{2016+2017}\)
\(\Rightarrow\)\(\frac{2015}{2016}+\frac{2016}{2017}>\frac{2015+2016}{2016+2017}\)
\(\Rightarrow A>B\)
Vậy: \(A>B\)
\(A>B\)