Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có \(2^{30}=\left(2^3\right)^{10}=8^{10}\)
\(3^{30}=\left(3^3\right)^{10}=27^{10}\)
\(4^{30}=\left(4^3\right)^{10}=64^{10}\)
ta có \(3^{20}=\left(3^2\right)^{10}=9^{10}\)
\(6^{20}=\left(6^2\right)^{10}=36^{10}\)
\(8^{20}=\left(8^2\right)^{10}=64^{10}\)
\(\Rightarrow2^{30}+3^{30}+4^{30}=8^{10}+27^{10}+64^{10}\)
\(\Rightarrow3^{20}+6^{20}+8^{20}=9^{10}+36^{10}+64^{10}\)
Xét \(8^{10}<9^{10}\) (1)
\(27^{10}<36^{10}\)(2)
\(64^{10}=64^{10}\)(3)
từ (1)(2)(3)\(\Leftrightarrow8^{10}+27^{10}+64^{10}<9^{10}+36^{10}+64^{10}\)
\(\Rightarrow2^{30}+3^{30}+4^{30}<3^{20}+6^{20}+8^{20}\)
\(2^0+2^1+2^2+2^3+...+2^{50}=1+2+2.2+2^2.2+...+2^{49}.2\)
\(=1+2\left(1+2+2^2+2^3+...+2^{49}\right)\)
\(=1+2\left(2^{50}-1\right)\)
\(=1+2^{51}-2\)
\(=2^{51}-1< 2^{51}\)
Vậy \(2^0+2^1+2^2+2^3+...+2^{50}< 2^{51}\)
Ý trc mình ko biết sorry bạn nhiều
T i c k cho mình nha mình mới có 4 điểm, thanks
\(\left(\frac{1}{16}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)
Ta có: \(\left(\frac{1}{2}\right)^{50}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left(\frac{1}{32}\right)^{10}\)
Do \(\frac{1}{6}>\frac{1}{32}\Rightarrow\left(\frac{1}{6}\right)^{10}>\left(\frac{1}{32}\right)^{10}\)
Vậy \(\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
a) \(10^{20}\) và \(9^{10}\)
Vì 10 > 9 ; 20 > 10
nên \(10^{20}>9^{10}\)
Vậy \(10^{20}>9^{10}\)
b) \(\left(-5\right)^{30}\) và \(\left(-3\right)^{50}\)
Ta có: \(\left(-5\right)^{30}=5^{30}=\left(5^3\right)^{10}=125^{10}\)
\(\left(-3\right)^{50}=3^{50}=\left(3^5\right)^{10}=243^{10}\)
Vì 243 > 125 nên \(125^{10}< 243^{10}\)
Vậy \(\left(-5\right)^{30}< \left(-3\right)^{50}\)
c) \(64^8\) và \(16^{12}\)
Ta có: \(64^8=\left(4^3\right)^8=4^{24}\)
\(16^{12}=\left(4^2\right)^{12}=4^{24}\)
Vậy \(64^8=16^{12}\left(=4^{24}\right)\)
d) \(\left(\frac{1}{6}\right)^{10}\) và \(\left(\frac{1}{2}\right)^{50}\)
Ta có: \(\left(\frac{1}{6}\right)^{10}=\left[\left(\frac{1}{2}\right)^4\right]^{10}=\left(\frac{1}{2}\right)^{40}\)
Vì 40 < 50 nên \(\left(\frac{1}{2}\right)^{40}< \left(\frac{1}{2}\right)^{50}\)
Vậy \(\left(\frac{1}{16}\right)^{10}< \left(\frac{1}{2}\right)^{50}\)
Ta có: \(2^{30}+3^{30}+4^{30}=\left(2^3\right)^{10}+\left(3^3\right)^{10}+\left(4^3\right)^{10}=8^{10}+27^{10}+64^{10}\)
\(3^{20}+6^{20}+8^{20}=\left(3^2\right)^{10}+\left(6^2\right)^{10}+\left(8^2\right)^{10}=9^{10}+36^{10}+64^{10}\)
Vì \(8< 9\)\(\Rightarrow8^{10}< 9^{10}\)
mà \(27< 36\)\(\Rightarrow27^{10}< 36^{10}\)
\(\Rightarrow8^{10}+27^{10}< 9^{10}+36^{10}\)
\(\Rightarrow8^{10}+27^{10}+64^{10}< 9^{10}+36^{10}+64^{10}\)
hay \(2^{30}+3^{30}+4^{30}< 3^{20}+6^{20}+8^{20}\)
so sánh: 2^30 + 3^30 + 4^30 và 3^20 + 6^20 + 8^20
2^30 = ( 2^3)^10 = 8^ 10
3^30 = (3^3)^10 = 27^10
4^30 = (4^3)^10 = 64^10
3^20 = (3^2)^10 = 9^10
6^20 = (6^2) = 36^10
8^20 = (8^2)^10 = 84^10
vì 9^10 > 8^10
36^10 > 27^10
84^10 > 64^10
=> 2^30 + 3^30 + 4^30 < 3^20 + 6^20 + 8^20
a/ ta co \(50^{20}=\left(50^2\right)^{10}\)
\(\left(50^2\right)^{10}=2500^{10}< 2550^{10}\)
Hay \(50^{20}< 2550^{10}\)
b/ ta có \(3^{75}=\left(3^3\right)^{25}\)
\(5^{50}=\left(5^2\right)^{25}\)
\(\Rightarrow\left(3^3\right)^{25}=27^{25}\)
\(\Rightarrow\left(5^2\right)^{25}=25^{25}\)
Vay \(3^{75}>5^{50}\)
a. \(2^{100}=\left(2^2\right)^{50}=4^{50}<5^{50}\)
Vậy \(2^{100}<5^{50}.\)
b. \(4^{30}=\left(2^2\right)^{30}=2^{60}\)(1)
\(8^{20}=\left(2^3\right)^{20}=2^{60}\)(2)
Từ (1) và (2) => \(4^{30}=8^{20}.\)