K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 10 2018

hoàng lớp 6a3  hkyuhbgj ta ku da

20 tháng 10 2018

Liên quan

1 tháng 11 2018

\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2};5y=6z\Rightarrow\frac{y}{6}=\frac{z}{5}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{6}=\frac{z}{10}\)

\(\Rightarrow\frac{x}{9}=\frac{y}{6}=\frac{z}{10}=\frac{x+y-z}{9+6-10}=-\frac{20}{5}=-4\)

\(\Rightarrow x=-36;y=-24;z=-40\)

1 tháng 11 2018

ta có: 2x=3y => x=\(\frac{3y}{2}\)

           5y=6z => z=\(\frac{5y}{6}\)Thay x và z vào biểu thức x+y=z-20 ta được:

\(\frac{3y}{2}\)+y =\(\frac{5y}{6}\)-20

\(\frac{3y.3}{2.3}\)+\(\frac{6y}{6}\)-\(\frac{5y}{6}\)=-20

\(\frac{9y+6y-5y}{6}\)=-20

\(\frac{10y}{6}\)=-20

10y=-20.6

10y= -120

y=-12 . =>x=\(\frac{3.\left(-12\right)}{2}\)=-18 ,z=-10

7 tháng 12 2018

\(2x+3y=0\)

\(\Leftrightarrow2x=-3y\)

\(\Rightarrow\frac{x}{-3}=\frac{y}{2}\Rightarrow\frac{-x}{3}=\frac{y}{2}\)

Ta có : \(\left(\frac{-x}{3}\right)^2=\frac{-x}{3}\cdot\frac{-x}{3}=\frac{-x}{3}\cdot\frac{y}{2}=\frac{-xy}{3\cdot2}=\frac{54}{6}=9\)

\(\Rightarrow\left(\frac{-x}{3}\right)=\left(\pm3\right)^2\)

\(\Rightarrow\orbr{\begin{cases}\frac{-x}{3}=\frac{y}{2}=-3\\\frac{-x}{3}=\frac{y}{2}=3\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=9;y=-6\\x=-9;y=6\end{cases}}\)

Vậy ......

21 tháng 12 2017

Bí à??? :))

16 tháng 3 2018

ra bao nhiêu vậy

\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{x^2}{2^2}=\frac{y^2}{3^2}=\frac{x^2+y^2}{4+9}=\frac{52}{13}=4\)

\(\Rightarrow\hept{\begin{cases}\frac{x^2}{2^2}=4\Rightarrow x^2=16=\left(\pm4\right)^2\\\frac{y^2}{3^2}=4\Rightarrow y^2=36=\left(\pm6\right)\end{cases}}\)

Còn lại bạn tự làm

6 tháng 9 2019

Gọi \(\frac{x}{2}=\frac{y}{3}=\frac{z}{-5}=k\Rightarrow\hept{\begin{cases}x=2k\\y=3k\\z=-5k\end{cases}}\left(1\right)\)

Thay (1) vào biểu thức \(x^2+y^2=52\)ta  được :

\(\left(2k\right)^2+\left(3k\right)^2=52\)

\(\Leftrightarrow4k^2+9k^2=52\)

\(\Leftrightarrow13k^2=52\)

\(\Leftrightarrow k^2=4\)

\(\Leftrightarrow k=\pm2\)

Thay từng TH vào làm nốt đi

17 tháng 12 2017

Ta có:\(\hept{\begin{cases}\left(y-3\right)^{2014}\ge0\\\left|2x+1\right|^{2015}\ge0\end{cases}}\)\(\Rightarrow\left(y-3\right)^{2014}+\left|2x+1\right|^{2015}\ge0\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}\left(y-3\right)^{2014}=0\\\left|2x+1\right|^{2015}=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}y-3=0\\2x+1=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}y=3\\x=-\frac{1}{2}\end{cases}}\)

17 tháng 12 2017

Ta có: (y-3)2014 \(\ge\)0 và |2x+1|2015 \(\ge\)0

Mà (y-3)2014 + |2x+1|2015 = 0 => (y-3)2014 = 0 và |2x+1|2015 = 0

=> y - 3 = 0 và 2x + 1 = 0

=> y = 3 và 2x = -1

=> y = 3 và x = -1/2.

Vậy y = 3 và x = -1/2.

18 tháng 2 2020

Ta có :\(\left(2x-5\right)^{2000}\) \(\geq\) \(0\) \(;\) \(\left(3y+4\right)^{2002}\) \(\geq\) \(0\)

\(\implies\)  \(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\) \(\geq\)  \(0\) (1)

  Mà theo đầu bài ra ta có: \(\left(2x-5\right)^{2000}+\left(3y+4\right)^{2002}\) <\(0\) (2)

Từ (1);(2)  \(\implies\)  Không có số nguyên  x;y nào nhỏ hơn hoặc bằng 0 thỏa mãn ycbt

19 tháng 2 2020

thank bn iu

20 tháng 11 2018

Nhận xét: Vai trò của x; y như nhau nên giả sử x\(\le\)y.

4x + 1 chia hết cho y => 4x + 1 = ky (k\(\in\)N*)

Có 4x + 1\(\le\)4x + 1 => k.y \(\le\)4x + 1. => (k - 1).y + y \(\le\)4x + 1

Vì y là số tự nhiên khác 0 => 1\(\le\)y => (k - 1).y + y \(\le\)(k - 1)y + y

=> k - 1 \(\le\)4 => k - 1 = {0; 1; 2; 3; 4; 5} => k = {1; 2; 3; 4; 5}

+) Với k = 1 => 4x + 1 = y => 4y + 1 = 4.(4x + 1) + 1 = 16x + 5 chia hết cho x => 5 chia hết cho x => x = 1 hoặc x = 5

=> y = 5 hoặc y = 21 (chọn)

+) Với k = 2 => 4x + 1 = 2y => 4y + 1 = 8x + 3 chia hết cho x => 3 chia hết cho x => x = 1 hoặc x = 3

=> y = \(\frac{5}{2}\) hoặc y = \(\frac{13}{2}\)(loại)

+) Với k = 3 => 4x + 1 = 3y => 4y + 1 = \(\frac{16x+7}{3}\) chia hết cho x => 16x + 7 = 3mx (m là số tự nhiên)

=> (3m - 16)x = 7 => x là ước của 7 => x = 7 hoặc x = 1 => y = \(\frac{29}{3}\)hoặc y = \(\frac{5}{3}\)(loại)

+) Với k = 4 => 4x + 1 = 4y (loại, vì 4x + 1 không chia hết cho 4 mà 4y chia hết cho 4)

+) Với k = 5 => 4x + 1 = 5y => 4y + 1 = \(\frac{16x+9}{5}\)chia hết cho x => 16x + 9 = 5ny (n là số tự nhiên)

=> (5n = 16)x = 9 => x là ước của 9 => x = {1; 3; 9} => y = 1 hoặc y = \(\frac{13}{5}\)hoặc y = \(\frac{37}{5}\)(loại)

Từ các trường hợp trên các cặp số (x; y) thỏa mãn là: (1; 1); (1; 5); (5; 21); (5; 1) và (21; 5).