Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a.\(\left(3x-2\right)^2=16\)
Ta có: \(\left(3x-2\right)^2=16\)
\(\Rightarrow\left(3x-2\right)^2=\left(4\right)^2\)
\(\Rightarrow3x-2=4\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
b. \(\left(\dfrac{4}{5}x-\dfrac{3}{4}\right)^3=\dfrac{-8}{125}\)
\(\Rightarrow\left(\dfrac{4}{5}x-\dfrac{3}{4}\right)^3=\left(\dfrac{-2}{5}\right)^3\)
\(\Rightarrow\dfrac{4}{5}x-\dfrac{3}{4}=\dfrac{-2}{5}^{ }\)
\(\Rightarrow\dfrac{4}{5}x-=\dfrac{7}{20}\)
\(\Rightarrow x=\dfrac{7}{16}\)
\(\dfrac{5}{6}x-\dfrac{3}{4}=\dfrac{-1}{4}+\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{5}{6}x=\dfrac{7}{6}\)
\(\Rightarrow x=\dfrac{7}{5}\)
b) \(-1\dfrac{1}{2}-\dfrac{2}{3}x=\dfrac{5}{6}-\left(\dfrac{-2}{5}\right)\)
\(\Leftrightarrow\dfrac{2}{3}x=-\dfrac{41}{15}\)
\(\Rightarrow x=-\dfrac{41}{10}\)
c) \(\left(\dfrac{4}{5}:x+1,5\right):\dfrac{2}{3}=-1,5\)
\(\Leftrightarrow\dfrac{8+15x}{10x}.\dfrac{3}{2}=\dfrac{-3}{2}\)
\(\Leftrightarrow\dfrac{24+45x}{20x}=\dfrac{-3}{2}\)
\(\Leftrightarrow-60x=48+90x\)
\(\Rightarrow x=-0,32\)
d) \(\dfrac{4}{3}x-\dfrac{2}{3}=\dfrac{1}{4}-x\)
\(\Leftrightarrow\dfrac{4x-2}{3}=\dfrac{1-4x}{4}\)
\(\Rightarrow16x-8=3-12x\)
\(\Rightarrow x=\dfrac{11}{28}\)
a) Vì |a|=\(\dfrac{3}{4}\)=>a=\(\dfrac{3}{4}\).Thay vào ta sẽ có:
A=3.\(\dfrac{3}{4}\)-4.\(\dfrac{3}{4}\).(\(\dfrac{-5}{6}\))+5.(\(\dfrac{-5}{6}\))
A=\(\dfrac{9}{4}-\left(\dfrac{-5}{2}\right)+\left(\dfrac{-25}{6}\right)\)
A=\(\dfrac{19}{4}\)-\(\dfrac{25}{6}\)
A=\(\dfrac{14}{24}\)=\(\dfrac{7}{12}\)
b, Thay vào, ta sẽ có:
A=3.\(\left(\dfrac{-2}{3}\right)-4.\left(\dfrac{-2}{3}\right).\dfrac{4}{5}+5.\dfrac{4}{5}\)
A=-2-\(\left(\dfrac{-32}{15}\right)\)+4
A=\(\dfrac{2}{15}\)+4
A=\(\dfrac{62}{15}\)
a: \(\dfrac{2.75}{x}=\dfrac{0.4}{1.5}=\dfrac{4}{15}\)
\(\Leftrightarrow x=\dfrac{11}{4}\cdot\dfrac{15}{4}=\dfrac{165}{16}\)
b: \(3\dfrac{1}{2}:\left(2x-3\right)=\dfrac{-3}{4}:0.2\)
\(\Leftrightarrow\dfrac{7}{2}:\left(2x-3\right)=\dfrac{-3}{4}:\dfrac{1}{5}=\dfrac{-15}{4}\)
\(\Leftrightarrow2x-3=\dfrac{7}{2}:\dfrac{-15}{4}=\dfrac{-7}{2}\cdot\dfrac{4}{15}=\dfrac{-28}{30}=\dfrac{-14}{15}\)
=>2x=-14/15+3=45/45-14/15=31/45
=>x=31/90
c: \(\dfrac{3x+2}{27}=\dfrac{3}{3x+2}\)
\(\Leftrightarrow\left(3x+2\right)^2=81\)
=>3x+2=9 hoặc 3x+2=-9
=>3x=7 hoặc 3x=-11
=>x=7/3 hoặc x=-11/3
d: \(\dfrac{5-x}{4}=\dfrac{2x+3}{2}\)
=>10-2x=8x+12
=>-10x=2
hay x=-1/5
a. Ta có : ( a + b )( c - d ) = ac-ad+bc-bd (1)
( a - b )( c + d ) = ac+ad-bc+bd (2)
Từ giả thuyết : \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow ad=bc\) (3)
Từ (1) , ( 2) và ( 3) \(\Rightarrow\)( a + b )( c - d) = ( a - b)( c + d )
\(\Rightarrow\dfrac{a+b}{a-b}=\dfrac{c+d}{c-d}\left(đpcm\right)\)
c) +)Điểm A ( 1;9) => x = 1 ; y = 9
Thay x = 1 vào y = 4x+5 , ta có:
y = 4.1+5
y = 4+5
y = 9
Vậy điểm A ( 1;9 ) thuộc đồ thị hàm số y = 4x +5
+) Điểm B ( -2;3 ) => x = -2 ; y = 3
Thay x = -2 vào y = 4x +5 , ta có:
y = 4.(-2) + 5
y = (-8) + 5
y = (-3)
Vậy điểm B ( -2;3) không thuộc đồ thị hàm số y = 4x+5
....Các câu khác tương tự....> . <...
\(A=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)-\left(\dfrac{3}{4}+\dfrac{2}{9}+\dfrac{1}{36}\right)+\dfrac{1}{64}\)
\(=\dfrac{5+9+1}{15}-\dfrac{27+8+1}{36}+\dfrac{1}{64}\)
=1/64
a)
\(\left\{{}\begin{matrix}\left(4x-1\right)^4\ge0\\\left|2x-3y\right|\ge0\end{matrix}\right.\) \(\Rightarrow A\ge25,6\) tự tìm cận
không có Max
b) giống vậy
c) \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\Rightarrow-\left(x-3\right)^2\le0\\\left|4x-3y\right|\ge0\Rightarrow-\left|4x-3y\right|\le0\end{matrix}\right.\)
\(C\le40,5\) tự tìm cận
không có GTNN
a, Có: \(25^{200}=\left(5^2\right)^{200}=5^{400}\)
Vì \(5^{400}=5^{400}\) mà \(25^{200}=5^{400}\Rightarrow5^{400}=25^{200}\)
c, Có:
a/ 263 và 342
Ta có: 263=(23)21=821
342=(32)21=921
mà 821<921
vậy 263<342
b/5400 và 25200
Ta có: 25200=(52)200=5400
mà 5400=5400
vậy 5400=25200
c/ \(\left(\dfrac{-1}{16}\right)^{100}v\text{à}\left(\dfrac{-1}{2}\right)^{500}\)
Ta có: \(\left(\dfrac{-1}{2}\right)^{500}=\left(\left(\dfrac{-1}{2}\right)^5\right)^{100}=\left(\dfrac{-1}{32}\right)^{100}\)
mà: \(\left(\dfrac{-1}{16}\right)^{100}< \left(\dfrac{-1}{32}\right)^{100}\)
vậy\(\left(\dfrac{-1}{16}\right)^{100}< \left(\dfrac{-1}{2}\right)^{500}\)