Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(10A=\dfrac{10\left(10^{1990}+1\right)}{10^{1991}+1}=\dfrac{10^{1991}+10}{10^{1991}+1}=\dfrac{10^{1991}+1+9}{10^{1991}+1}=1+\dfrac{9}{10^{1991}+1}\left(1\right)\)
\(10B=\dfrac{10\left(10^{1991}+1\right)}{10^{1992}+1}=\dfrac{10^{1992}+10}{10^{1992}+1}=\dfrac{10^{1992}+1+9}{10^{1992}+1}=1+\dfrac{9}{10^{1992}+1}\left(2\right)\)
Lại có : \(1+\dfrac{9}{10^{1991}+1}>1+\dfrac{9}{10^{1992}+1}\)
\(\Leftrightarrow10A>10B\Leftrightarrow A>B\)
Vậy...
Áp dụng a/b < 1 => a/b < a+m/b+m (a;b;m thuộc N*)
=> \(B=\frac{10^{1991}+1}{10^{1992}+1}< \frac{10^{1991}+1+9}{10^{1992}+1+9}\)
=> \(B< \frac{10^{1991}+10}{10^{1992}+10}\)
=> \(B< \frac{10.\left(10^{1990}+1\right)}{10.\left(10^{1991}+1\right)}\)
=> \(B< \frac{10^{1990}+1}{10^{1991}+1}=A\)
=> B < A
Ta có : \(A=\frac{10^{1990}+1}{10^{1991}+1}=>10A=\frac{10.\left(10^{1990}+1\right)}{10^{1991}+1}\)
\(=>10A=\frac{10^{1991}+10}{10^{1991}+1}=\frac{\left(10^{1991}+1\right)+9}{10^{1991}+1}\)
\(=>10A=1+\frac{9}{10^{1991}+1}\)
Ta lại có : \(B=\frac{10^{1991}+1}{10^{1992}+1}=>10B=\frac{10.\left(10^{1991}+1\right)}{10^{1992}+1}\)
Tương tự như A => \(10B=1+\frac{9}{10^{1992}+1}\)
Vì \(\frac{9}{10^{1991}+1}>\frac{9}{10^{1992}+1}=>10A>10B\)
\(=>A>B\)
Ta có :
A = \(\frac{10^{1990}+1}{10^{1991}+1}\)
10A = \(\frac{10.\left(10^{1990}+1\right)}{10^{1991}+1}\)
10A = \(\frac{10^{1991}+10}{10^{1991}+1}\)
10A = \(\frac{10^{1991}+1+9}{10^{1991}+1}\)
10A = \(1+\frac{9}{10^{1991}+1}\left(1\right)\)
Ta lại có :
B = \(\frac{10^{1991}+1}{10^{1992}+1}\)
10B = \(\frac{10.\left(10^{1991}+1\right)}{10^{1992}+1}\)
10B = \(\frac{10^{1992}+10}{10^{1992}+1}\)
10B = \(\frac{10^{1992}+1+9}{10^{1992}+1}\)
10B = \(1+\frac{9}{10^{1992}+1}\left(2\right)\)
Từ \(\left(1\right)va\left(2\right)\)
Ta có :\(1+\frac{9}{10^{1991}+1}>1+\frac{9}{10^{1992}+1}\)
\(\Rightarrow\)10A > 10B
\(\Rightarrow\)A > B
\(A=\frac{10^{1990}+1}{10^{1991}+1}\Rightarrow10A=\frac{10^{1991}+10}{10^{1991}+1}=1+\frac{9}{10^{1991}+1}\)
\(B=\frac{10^{1991}+1}{10^{1992}+1}\Rightarrow10B=\frac{10^{1992}+10}{10^{1992}+1}=1+\frac{9}{10^{1992}+1}\)
Vì \(10^{1991}< 10^{1992}\Rightarrow1+\frac{9}{10^{1991}+1}>1+\frac{9}{10^{1992}+1}\)
\(\Rightarrow\frac{10^{1990}+1}{10^{1991}+1}>\frac{10^{1991}+1}{10^{1992}+1}\Rightarrow A>B\)
Ta có : \(B=\frac{10^{1991}+1}{10^{1992}+1}< \frac{10^{1991}+1+9}{10^{1992}+1+9}\)
Mà : \(\frac{10^{1991}+1+9}{10^{1992}+1+9}=\frac{10^{1991}+10}{10^{1992}+10}\)
\(=\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)
\(=\frac{10^{1990}+1}{10^{1991}+1}\)
\(\Rightarrow B< A\)
Ta có:
\(A=\left(\frac{10^{1990}+1}{10^{1991}+1}\right).\frac{10}{10}=\frac{10^{1991}+10}{10^{1992}+10}\)
Mình làm bằng cách tính phần bù:
Ta có:
\(1-A=1-\frac{10^{1991}+10}{10^{1992}+10}=\frac{10^{1992}+10}{10^{1992}+10}-\frac{10^{1991}+10}{10^{1992}+10}=\frac{10^{1992}-10^{1991}}{10^{1992}+10}\)
\(1-B=1-\frac{10^{1991}+1}{10^{1992}+1}=\frac{10^{1992}+1}{10^{1992}+1}-\frac{10^{1991}+1}{10^{1992}+1}=\frac{10^{1992}-10^{1991}}{10^{1992}+1}\)
Vì \(\frac{10^{1992}-10^{1991}}{10^{1992}+10}<\frac{10^{1992}-10^{1991}}{10^{1992}+1}\)nên\(\frac{10^{1991}+10}{10^{1992}+10}>\frac{10^{1991}+1}{10^{1992}+1}\)
\(\Rightarrow A>B\)
Vì\(\frac{10^{1991}+1}{10^{1992}+1}\)<1
Nên\(\frac{10^{1991}+1}{10^{1992}+1}\)<\(\frac{10^{1991}+1+9}{10^{1992}+1+9}\)
Ta có: \(\frac{10^{1991}+1+9}{10^{1992}+1+9}\)=\(\frac{10^{1991}+10}{10^{1992}+10}\)=\(\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\frac{10^{1990}+1}{10^{1991}+1}\)
=>\(\frac{10^{1991}+1}{10^{1992}+1}\)<\(\frac{10^{1990}+1}{10^{1991}+1}\)
Vậy: B<A
Đặt \(A=\frac{10^{1990}+1}{10^{1991}+1}\)
\(\Rightarrow10A=\frac{10\cdot(10^{1990}+1)}{10^{1991}+1}\)
\(=\frac{10^{1991}+10}{10^{1991}+1}=\frac{10^{1991}+1+9}{10^{1991}+1}=1+\frac{9}{10^{1991}+1}\)
Đặt \(B=\frac{10^{1991}+1}{10^{1992}+1}\)
\(\Rightarrow10B=\frac{10\cdot(10^{1991}+1)}{10^{1992}+1}=\frac{10^{1992}+10}{10^{1992}+1}=\frac{10^{1992}+1+9}{10^{1992}+1}=1+\frac{9}{10^{1992}+1}\)
Tự so sánh được rồi -_-
Giải:
Ta gọi \(\dfrac{10^{1990}+1}{10^{1991}+1}\) =A và \(\dfrac{10^{1991}}{10^{1992}}\) =B
Ta có:
A=\(\dfrac{10^{1990}+1}{10^{1991}+1}\)
10A=\(\dfrac{10^{1991}+10}{10^{1991}+1}\)
10A=\(\dfrac{10^{1991}+1+9}{10^{1991}+1}\)
10A=\(1+\dfrac{9}{10^{1991}+1}\)
Tương tự:
B=\(\dfrac{10^{1991}}{10^{1992}}\)
10B=\(\dfrac{10^{1992}}{10^{1992}}=1\)
Vì \(\dfrac{9}{10^{1991}+1}< 1\) nên 10A<10B
⇒ \(\dfrac{10^{1990}+1}{10^{1991}+1}\) < \(\dfrac{10^{1991}}{10^{1992}}\)
Ta có :
\(10A=\dfrac{10^{1991}+10}{10^{1991}+1}=\dfrac{10^{1991}+1+9}{10^{1991}+1}=1+\dfrac{9}{10^{1991}+1}\)\(\left(1\right)\)
\(10B=\dfrac{10^{1992}+10}{10^{1992}+1}=\dfrac{10^{1992}+1+9}{10^{1992}+1}=1+\dfrac{9}{10^{1992}+1}\)\(\left(2\right)\)
Vì \(1+\dfrac{9}{10^{1991}+1}>1+\dfrac{9}{10^{1992}+1}\)\(\left(3\right)\)
Từ \(\left(1\right)+\left(2\right)+\left(3\right)\Rightarrow10A>10B\)
\(\Rightarrow A>B\)
~ Chúc bn học tốt ~
Ta có:
A=101990+1101991+1=101990.10101991.10=101990101991=1/10A=101990+1101991+1=101990.10101991.10=101990101991=1/10 (%)
B=101991+1101992+1=101991.10101992.10=101991101992=1/10B=101991+1101992+1=101991.10101992.10=101991101992=1/10 (%) (%)