K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 6 2024

a) Ta có: 

\(64^8=\left(2^6\right)^8=2^{6\cdot8}=2^{48}\)

\(16^{12}=\left(2^4\right)^{12}=2^{4\cdot12}=2^{48}\)

\(\Rightarrow64^8=16^{12}\)

b) Ta có:

\(\left(\dfrac{1}{16}\right)^{10}=\left[\left(\dfrac{1}{2}\right)^4\right]^{10}=\left(\dfrac{1}{2}\right)^{4\cdot10}=\left(\dfrac{1}{2}\right)^{40}\)

Mà: 50 > 40 => `(1/2)^50<(1/2)^40` 

c) Ta có: 

\(\left(\dfrac{9}{16}\right)^{100}=\left[\left(\dfrac{3}{4}\right)^2\right]^{100}=\left(\dfrac{3}{4}\right)^{200}\)

Mà: `3/4>2/3=>(3/4)^200>(2/3)^200`

28 tháng 6 2024

\(^{^{ }}\)a,64^8=16^12

b,(1/16)^10<(1/2)^50

c,(2/3)^200>(9/16)^100

CỦA BẠN ĐÂY NẾU SAI THÌ CHO MÌNH XIN LỖI NHÉ

 

9 tháng 1 2016

a) 10200=102.100=100100>99100
b)\(64^8=\left(4^3\right)^8=4^{3.8}=4^{24}\)
\(16^{12}=\left(4^2\right)^{12}=4^{24}\)
\(\Rightarrow64^8=16^{12}\)
c)\(6^{100}=3^{100}.2^{100}\)
\(3^{170}=3^{100}.3^{70}\)
Có :\(2^{99}=\left(2^3\right)^{33}=8^{33}\Rightarrow2^{100}=8^{33}.2<8^{34}\)
Mà\(3^{70}=\left(3^2\right)^{35}=9^{35}>8^{35}>8^{34}\)
\(6^{100}<3^{170}\)

9 tháng 1 2016

a, 10200 = (102)100 = 100100 > 99100

=> 10200 > 9100 

21 tháng 7 2017

b)Có \(63^7< 64^7\)

\(64^7=\left(2^6\right)^7=2^{42}\)

\(16^{12}=\left(2^4\right)^{12}=2^{48}\)

Mà \(2^{42}< 2^{48}\Rightarrow63^7< 64^7< 16^{12}\Rightarrow63^7< 16^{12}\)

Câu 1 :

a) \(4.\left(\frac{1}{32}\right)^{-2}:\left(2^3.\frac{1}{16}\right)\)

\(=2^2.32^2:\left(\frac{1}{8}.16\right)=\left(2.32\right)^2:2=64^2:2\)

\(=2048=2^{11}\)

b) \(5^2.3^5.\left(\frac{3}{5}\right)^2\)

\(=\left(5.\frac{3}{5}\right)^2.3^5=3^2.3^5=3^7\)

7 tháng 8 2019

VIẾT CÁC BIỂU THỨC DƯỚI DẠNG LUỸ THỪA CỦA 1 SỐ HỮU TỈ

\(a,4\cdot\left(\frac{1}{32}\right)^{-2}:\left(2^3\cdot\frac{1}{16}\right)\\ =4\cdot1024:\left(8\cdot\frac{1}{16}\right)\\ =4\cdot1024:\frac{1}{2}\\ =2\cdot1024\\ =2\cdot2^{10}\\ =2^{11}\)

\(b,5^2\cdot3^5\cdot\left(\frac{3}{5}\right)^2\\ =5^2\cdot\left(\frac{3}{5}\right)^2\cdot3^5\\ =3^2\cdot3^5\\ =3^7\)

2 SO SÁNH

\(a,10^{20}\text{ và }9^{10}\)

Có: \(9^{10}=\left(3^2\right)^{10}=3^{20}\)

\(\Rightarrow10^{20}>3^{20}\\ \text{hay}\text{ }10^{20}>9^{10}\)

\(b,\left(-5\right)^3\text{ và }\left(-3\right)^{50}\)

Có: \(\left(-3\right)^{50}=3^{50}\)

\(\Rightarrow\left(-5\right)^3< 3^{50}\\ \text{hay }\left(-5\right)^3< \left(-3\right)^{50}\)

\(c,64^3\text{ và }16^{12}\)

Có: \(64^3=\left(4^3\right)^3=4^9;16^{12}=\left(4^2\right)^{12}=4^{24}\)

\(\Rightarrow4^9< 4^{24}\\ hay\text{ }64^3< 16^{12}\)

\(d,\left(\frac{1}{16}\right)^{10}\text{ và }\left(\frac{1}{2}\right)^{50}\)

Có: \(\left(\frac{1}{2}\right)^{50}=\left(\frac{1}{2}\right)^{5\cdot10}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left(\frac{1}{32}\right)^{10}\)

\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{32}\right)^{10}\\ \text{hay }\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)

31 tháng 10 2018

Bài giải

ta có : 10<99 =>10100<99100

31 tháng 10 2018

1.So sánh hai lũy thừa

a;10200 và 99100

b;648và1612

C;6100 và 3170

5 tháng 8 2018

a) \(16^{12}=4^{2\cdot12}=4^{24}\)

\(64^8=4^{4\cdot8}=4^{32}\)

=>\(64^8>16^{12}\)

5 tháng 8 2018

b) 

\(5^{23}=5.5^{22}\)

=> \(6.5^{22}>5^{23}\)

29 tháng 8 2017

bài khó quá giải cũng dài luôn

29 tháng 8 2017

\(Ai\)\(giúp\)\(mình\)\(bài\)\(kia\)\(đi\)

4 tháng 10 2016

a) Ta có:

3200 = (32)100 = 9100

2300 = (23)100 = 8100

Vì 9100 > 8100 nên 3200 > 2300

b) Đề đúng phải là so sánh 1255 và 257 nhé!

Ta có: 1255 = (53)5 = 515

257 = (52)7 = 514

Vì 515 > 514 nên 1255 > 257

c) Ta có:

920 = (32)20 = 340

2713 = (33)13 = 339

Vì 340 > 339 nên 920 > 2713

d) Ta có:

1630 = (24)30 = 2120 > 2100

=> 1630 > 2100

a) 3200=32.100=(32)100=9100

2300=23.100=(23)100=8100

Vì: 9100> 8100 (9>8)=> 3200>2300

b)  Không thể nào so sánh được nha bạn.

c) 920=( 32)20=32.20=340

2713=(33)13=33.13=339

Vì: 340>339 (40>39)

=> 920>2713

d) 1630=(24)30=24.30=2120

Vì: 2120>2100 (120>100)=> 1630>2100

1 tháng 11 2016

giờ trả lời còn được tick ko bạn

4 tháng 11 2016

được mà bn

Bài 1:

Ta có:

\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)

\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)

Lại có:

\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)

\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)

Bài 2:

Ta có:

\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)

\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)

\(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)

\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)

\(\Rightarrow13A>13B\Rightarrow A>B\)