Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 10200=102.100=100100>99100
b)\(64^8=\left(4^3\right)^8=4^{3.8}=4^{24}\)
\(16^{12}=\left(4^2\right)^{12}=4^{24}\)
\(\Rightarrow64^8=16^{12}\)
c)\(6^{100}=3^{100}.2^{100}\)
\(3^{170}=3^{100}.3^{70}\)
Có :\(2^{99}=\left(2^3\right)^{33}=8^{33}\Rightarrow2^{100}=8^{33}.2<8^{34}\)
Mà\(3^{70}=\left(3^2\right)^{35}=9^{35}>8^{35}>8^{34}\)
\(6^{100}<3^{170}\)
b)Có \(63^7< 64^7\)
\(64^7=\left(2^6\right)^7=2^{42}\)
\(16^{12}=\left(2^4\right)^{12}=2^{48}\)
Mà \(2^{42}< 2^{48}\Rightarrow63^7< 64^7< 16^{12}\Rightarrow63^7< 16^{12}\)
Câu 1 :
a) \(4.\left(\frac{1}{32}\right)^{-2}:\left(2^3.\frac{1}{16}\right)\)
\(=2^2.32^2:\left(\frac{1}{8}.16\right)=\left(2.32\right)^2:2=64^2:2\)
\(=2048=2^{11}\)
b) \(5^2.3^5.\left(\frac{3}{5}\right)^2\)
\(=\left(5.\frac{3}{5}\right)^2.3^5=3^2.3^5=3^7\)
VIẾT CÁC BIỂU THỨC DƯỚI DẠNG LUỸ THỪA CỦA 1 SỐ HỮU TỈ
\(a,4\cdot\left(\frac{1}{32}\right)^{-2}:\left(2^3\cdot\frac{1}{16}\right)\\ =4\cdot1024:\left(8\cdot\frac{1}{16}\right)\\ =4\cdot1024:\frac{1}{2}\\ =2\cdot1024\\ =2\cdot2^{10}\\ =2^{11}\)
\(b,5^2\cdot3^5\cdot\left(\frac{3}{5}\right)^2\\ =5^2\cdot\left(\frac{3}{5}\right)^2\cdot3^5\\ =3^2\cdot3^5\\ =3^7\)
2 SO SÁNH
\(a,10^{20}\text{ và }9^{10}\)
Có: \(9^{10}=\left(3^2\right)^{10}=3^{20}\)
\(\Rightarrow10^{20}>3^{20}\\ \text{hay}\text{ }10^{20}>9^{10}\)
\(b,\left(-5\right)^3\text{ và }\left(-3\right)^{50}\)
Có: \(\left(-3\right)^{50}=3^{50}\)
\(\Rightarrow\left(-5\right)^3< 3^{50}\\ \text{hay }\left(-5\right)^3< \left(-3\right)^{50}\)
\(c,64^3\text{ và }16^{12}\)
Có: \(64^3=\left(4^3\right)^3=4^9;16^{12}=\left(4^2\right)^{12}=4^{24}\)
\(\Rightarrow4^9< 4^{24}\\ hay\text{ }64^3< 16^{12}\)
\(d,\left(\frac{1}{16}\right)^{10}\text{ và }\left(\frac{1}{2}\right)^{50}\)
Có: \(\left(\frac{1}{2}\right)^{50}=\left(\frac{1}{2}\right)^{5\cdot10}=\left[\left(\frac{1}{2}\right)^5\right]^{10}=\left(\frac{1}{32}\right)^{10}\)
\(\Rightarrow\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{32}\right)^{10}\\ \text{hay }\left(\frac{1}{16}\right)^{10}>\left(\frac{1}{2}\right)^{50}\)
1.So sánh hai lũy thừa
a;10200 và 99100
b;648và1612
C;6100 và 3170
a) \(16^{12}=4^{2\cdot12}=4^{24}\)
\(64^8=4^{4\cdot8}=4^{32}\)
=>\(64^8>16^{12}\)
a) Ta có:
3200 = (32)100 = 9100
2300 = (23)100 = 8100
Vì 9100 > 8100 nên 3200 > 2300
b) Đề đúng phải là so sánh 1255 và 257 nhé!
Ta có: 1255 = (53)5 = 515
257 = (52)7 = 514
Vì 515 > 514 nên 1255 > 257
c) Ta có:
920 = (32)20 = 340
2713 = (33)13 = 339
Vì 340 > 339 nên 920 > 2713
d) Ta có:
1630 = (24)30 = 2120 > 2100
=> 1630 > 2100
a) 3200=32.100=(32)100=9100
2300=23.100=(23)100=8100
Vì: 9100> 8100 (9>8)=> 3200>2300
b) Không thể nào so sánh được nha bạn.
c) 920=( 32)20=32.20=340
2713=(33)13=33.13=339
Vì: 340>339 (40>39)
=> 920>2713
d) 1630=(24)30=24.30=2120
Vì: 2120>2100 (120>100)=> 1630>2100
Bài 1:
Ta có:
\(\left(\frac{1}{10}\right)^{15}=\left(\frac{1}{5}\right)^{3.5}=\left(\frac{1}{125}\right)^5\)
\(\left(\frac{3}{10}\right)^{20}=\left(\frac{3}{10}\right)^{4.5}=\left(\frac{81}{10000}\right)^5\)
Lại có:
\(\frac{1}{125}=\frac{80}{10000}< \frac{81}{10000}\Rightarrow\left(\frac{1}{125}\right)^5< \left(\frac{81}{10000}\right)^5\)
\(\Rightarrow\left(\frac{1}{10}\right)^{15}< \left(\frac{3}{10}\right)^{20}\)
Bài 2:
Ta có:
\(A=\frac{13^{15}+1}{13^{16}+1}\Rightarrow13A=\frac{13^{16}+13}{13^{16}+1}=1+\frac{12}{13^{16}+1}\)
\(B=\frac{13^{16}+1}{13^{17}+1}\Rightarrow13B=\frac{13^{17}+13}{13^{17}+1}=1+\frac{12}{13^{17}+1}\)
Mà \(\frac{12}{13^{16}+1}>\frac{12}{13^{17}+1}\)
\(\Rightarrow1+\frac{12}{13^{16}+1}>1+\frac{12}{13^{17}+1}\)
\(\Rightarrow13A>13B\Rightarrow A>B\)
a) Ta có:
\(64^8=\left(2^6\right)^8=2^{6\cdot8}=2^{48}\)
\(16^{12}=\left(2^4\right)^{12}=2^{4\cdot12}=2^{48}\)
\(\Rightarrow64^8=16^{12}\)
b) Ta có:
\(\left(\dfrac{1}{16}\right)^{10}=\left[\left(\dfrac{1}{2}\right)^4\right]^{10}=\left(\dfrac{1}{2}\right)^{4\cdot10}=\left(\dfrac{1}{2}\right)^{40}\)
Mà: 50 > 40 => `(1/2)^50<(1/2)^40`
c) Ta có:
\(\left(\dfrac{9}{16}\right)^{100}=\left[\left(\dfrac{3}{4}\right)^2\right]^{100}=\left(\dfrac{3}{4}\right)^{200}\)
Mà: `3/4>2/3=>(3/4)^200>(2/3)^200`
\(^{^{ }}\)a,64^8=16^12
b,(1/16)^10<(1/2)^50
c,(2/3)^200>(9/16)^100
CỦA BẠN ĐÂY NẾU SAI THÌ CHO MÌNH XIN LỖI NHÉ