Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1. 536 = (53)12 = 12512
1124 = (112)12 = 12112
Vì 125 > 121 và 12 = 12 => 12512 > 12112 => 536 > 1124
2. 32n = (32)n = 9n
23n = (23)n = 8n. Vì 9 > 8 ; n = n => 9n > 8n => 32n > 23n
3. 523 = 5.522
Vì 5 < 6 ; 522 = 522 => 5.522 < 6.522 =>523 < 6.522
4. Có: 216 = 213.23 = 213.8
Vì 7 < 8 => 7.213 < 216
5. 275.498 = 315.716 = 315.715.7 = 2115.7 > 2115 => 2115 < 275.498
Câu bổ sung: 7255 - 7244 = 7244.(72 - 1) = 7244.71
7244 - 7243 = 7243.(72 - 1) = 7243.71 < 7244.71 => 7245 - 7244 > 7244 - 7243
a, \(S=1+2+2^2+2^3+...+2^{2017}\)
\(\Rightarrow2S=2+2^2+2^3+2^4+...+2^{2018}\)
\(\Rightarrow2S-S=\left(2+2^2+2^3+...+2^{2018}\right)-\left(1+2+2^2+...+2^{2017}\right)\)
\(\Rightarrow S=2^{2018}-1\)
Vậy : \(S=2^{2018}-1\)
b, Ta có : \(2^{2018}-1< 2^{2018}=2^2.2^{2016}=4.2^{2016}< 5.2^{2016}\)
Vì : \(2^{2018}-1< 4.2^{2016}< 5.2^{2016}\Rightarrow S< 5.2^{2016}\)
Vậy : \(S< 5.2^{2016}\)
Ta có:
\(A=1+2+2^2+...+2^{2012}\)
\(2A=2\left(1+2+2^2+...+2^{2012}\right)\)
\(2A=2+2^2+2^4+...+2^{2013}\)
\(2A-A=\left(2+2^2+...+2^{2013}\right)-\left(1+2+...+2^{2012}\right)\)
\(A=2^{2013}-1\)
Vì 2^2013 > 2^2012 nên 2^2013 - 1 > 2^2012 - 1
hay A>B
a)Ta có: \(2^{161}>2^{160}\)
Mà \(2^{160}=2^{4.40}=\left(2^4\right)^{40}=16^{40}\)
=> \(2^{161}>16^{40}\) (1)
Mà \(16^{40}>13^{40}\)(Vì 16>13) (2)
Từ (1)và(2)=> \(2^{161}>16^{40}>13^{40}\)
Vậy \(2^{161}>13^{40}\)
b)Ta có :+) \(3^{453}>3^{450}\)
Mà \(3^{450}=3^{3.150}=\left(3^3\right)^{150}=27^{150}\)
=> \(3^{453}>27^{150}\) (1)
+)\(5^{300}=5^{2.150}=\left(5^2\right)^{150}=25^{150}\) (2)
Mà \(27^{150}>25^{150}\)( Vì 27>25) (3)
Từ (1);(2)và(3)=> \(3^{453}>27^{150}>25^{150}\)
Hay \(3^{453}>5^{300}\)
Vậy \(3^{453}>5^{300}\)
Chú ý: Dấu "." là nhân nha!!!
Nhớ bấm "Đúng" cho mình nha!!!
> kho giai thich lm ;-;