K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bạn xem lại đề nhé. Theo mình nghĩ thì không có căn 4 ở sau dấu.... Đây là vô hạn mà.

undefined

24 tháng 8 2021

cảm ơn phương pháp của bạn nhiều nhé, nhờ bạn mà mình làm đc rồi ^^undefined

7 tháng 6 2017

Bài này may mình có thi qua rùi.

Đặt

\(A=\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}>0\)

=> \(A^2=4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}\)

=> A2 - A = 4           

=> A2 - A - 4 = 0

Giải phương trình được 2 nghiệm:

\(A_1=\frac{1+\sqrt{17}}{2}\)

\(A_2=\frac{1-\sqrt{17}}{2}< 0\)( loại vì A>0)

Vậy \(A=\frac{1+\sqrt{17}}{2}< \frac{1+\sqrt{25}}{2}=\frac{1+5}{2}=3\)

Kết luận: \(\sqrt{4+\sqrt{4+\sqrt{4+...+\sqrt{4}}}}< 3\)

-------------

Chắc bạn ko hiểu chỗ A2 - A = 4 nhỉ?

10 tháng 6 2017

SO SÁNH4+4+4+...+4

 VỚI 3

SO SÁNH4+4+4+...+4

 VỚI 3

25 tháng 7 2020

100 dấu căn nha

26 tháng 7 2020

\(\sqrt{4+\sqrt{4+\sqrt{4+\sqrt{4+...}}}}< \sqrt{6+\sqrt{6+\sqrt{6+...\sqrt{6+\sqrt{9}}}}}\)(100 dấu căn)

=> \(VT< \sqrt{6+\sqrt{6+\sqrt{6+...\sqrt{6+3}}}}=\sqrt{6+\sqrt{6+\sqrt{6+..\sqrt{6+\sqrt{9}}}}}\)(99 dấu căn)

=> \(VT< \sqrt{6+3}=3\)

17 tháng 8 2017

Ta có:

\(\frac{1-\sqrt{n}+\sqrt{n+1}}{1+\sqrt{n}+\sqrt{n+1}}=\frac{\left(1-\sqrt{n}+\sqrt{n+1}\right)^2}{\left(1+\sqrt{n}+\sqrt{n+1}\right)\left(1-\sqrt{n}+\sqrt{n+1}\right)}=\frac{2n+2-2\sqrt{n}+2\sqrt{n+1}-2\sqrt{n\left(n+1\right)}}{2\left(1+\sqrt{n+1}\right)}\)

\(=\frac{\left[2n+2-2\sqrt{n}+2\sqrt{n+1}-2\sqrt{n\left(n+1\right)}\right]\left(1-\sqrt{n+1}\right)}{2\left(1+\sqrt{n+1}\right)\left(1-\sqrt{n+1}\right)}=\frac{-2n\sqrt{n+1}+2n\sqrt{n}}{-2n}=\sqrt{n+1}-\sqrt{n}\)

Suy ra:

\(Q=\sqrt{3}-\sqrt{2}+\sqrt{4}-\sqrt{3}+...+\sqrt{2017}-\sqrt{2016}=\sqrt{2017}-\sqrt{2}< \sqrt{2017}-1=R\)

Vậy Q < R.

27 tháng 1 2017

CÂU 3 : ĐỀ BÀI , SUY RA :

X-1 + X-2 =3 <=> 2X = 6 <=> X =3 

5 tháng 7 2019

\(A=\sqrt{4+\sqrt{4+\sqrt{4+....}}}\)vô số dấu căn

\(\Leftrightarrow A^2=4+\sqrt{4+\sqrt{4+\sqrt{4+....}}}\)

\(\Leftrightarrow A^2-A-4=0\)

\(\Leftrightarrow\orbr{\begin{cases}A=\frac{1-\sqrt{17}}{2}\left(l\right)\\A=\frac{1+\sqrt{17}}{2}=2,56< 3\end{cases}}\)

Từ đây ta có \(\sqrt{4+\sqrt{4+\sqrt{4+....}}}< 3\)

5 tháng 7 2019

\(A=\sqrt{4+\sqrt{4}+\sqrt{4+.....}}\)vô số dấu căn

\(\Leftrightarrow A^2=4+\sqrt{4+\sqrt{4+\sqrt{4+...}}}\)

\(\Leftrightarrow A^2-A-A=0\)

\(\Leftrightarrow\orbr{\begin{cases}A=\frac{1-\sqrt{17}}{2}\\A=\frac{1+\sqrt{17}}{2}=2,56< 3\end{cases}}\)

Từ đây ta có: \(\sqrt{4+\sqrt{4}+\sqrt{4+.....}}< 3\)

Rất vui vì giúp đc bạn <3

20 tháng 6 2017

Bài này giải nhiều rồi. Thôi m trình bày thêm 1 lần nữa vậy. Lần sau tìm câu hỏi tương tự nha b.

Ta có:

\(A=\sqrt{4+\sqrt{4+\sqrt{4....}}}\) vô số dấu căn 

\(\Leftrightarrow A^2=4+\sqrt{4+\sqrt{4+\sqrt{4....}}}\)

\(\Leftrightarrow A^2-A-4=0\)

\(\Leftrightarrow\orbr{\begin{cases}A=\frac{1-\sqrt{17}}{2}\left(l\right)\\A=\frac{1+\sqrt{17}}{2}=2,56< 3\end{cases}}\)

Từ đây ta có \(\sqrt{4+\sqrt{4+\sqrt{4....}}}< 3\)

20 tháng 6 2017

mỗi lần mình đều xem hết danh sách câu hỏi tương tự mà không thấy.

Cảm ơn bạn nha!