Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chà. Một câu hỏi khá thú vị.........nhưng.........cũng ko kém phần tào lào đấy.
Toán lớp 6 à, thật oái ăm.
Phải chăng đây là 1 câu hỏi ngu, một câu hỏi ko có câu trả lời..........
\(A=\frac{33\cdot10^3}{2^3\cdot5\cdot10^3+7000}=\frac{33\cdot10^3}{2^3\cdot5\cdot10^3+7\cdot10^3}=\frac{33\cdot10^3}{10^3(2^3\cdot5+7)}=\frac{33\cdot10^3}{10^3\cdot47}=\frac{33}{47}\)
\(B=\frac{3774}{5217}=\frac{34\cdot111}{47\cdot111}=\frac{34}{47}\)
\(=>\frac{33}{47}< \frac{34}{47}\)nên \(A< B\)
\(M=\frac{19^{30}+5}{19^{31}+5}\)
\(19M=\frac{19^{31}+95}{19^{31}+5}=\frac{19^{31}+5}{19^{31}+5}+\frac{90}{19^{31}+5}=1+\frac{90}{19^{31}+5}\)
\(N=\frac{19^{31}+5}{19^{32}+5}\)
\(19N=\frac{19^{32}+95}{19^{32}+5}=\frac{19^{32}+5}{19^{32}+5}+\frac{90}{19^{32}+5}=1+\frac{90}{19^{32}+5}\)
chung tử rồi so sánh mẫu đi
#)Giải :
\(M=\frac{19^{30}+5}{19^{31}+5}\Rightarrow19M=\frac{19\left(19^{30}+5\right)}{19^{31}+5}=\frac{19^{31}+95}{19^{31}+5}=\frac{19^{31}+5+90}{19^{31}+5}=1+\frac{90}{19^{31}+5}\)
\(N=\frac{19^{31}+5}{19^{32}+5}\Rightarrow19N=\frac{19\left(19^{31}+5\right)}{19^{32}+5}=\frac{19^{32}+95}{19^{32}+5}=\frac{19^{32}+5+90}{19^{32}+5}=1+\frac{90}{19^{32}+5}\)
Vì \(\frac{90}{19^{31}+5}>\frac{90}{19^{32}+5}\Rightarrow1+\frac{90}{19^{31}+5}>1+\frac{90}{19^{32}+5}\Rightarrow19M>19N\Rightarrow M>N\)
#~Will~be~Pens~#
\(19M=\frac{19^{31}+95}{19^{31}+5}=\frac{19^{31}+5+90}{19^{31}+5}=1+\frac{90}{19^{31}+5}\)
\(19N=\frac{19^{32}+95}{19^{32}+5}=\frac{19^{32}+5+90}{19^{32}+5}=1+\frac{90}{19^{32}+5}\)
Vì \(19^{31}+5< 19^{32}+5\) nên \(\frac{90}{19^{31}+5}>\frac{90}{19^{32}+5}\) \(\Rightarrow1+\frac{90}{19^{31}+5}>1+\frac{90}{19^{32}+5}\)
Do đó \(M>N\)
Ta có :
\(N=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19.\left(19^{30}+5\right)}{19.\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=M\)
=> N < M
Bài 1:
Ta thấy A < 1
=> A = \(\frac{17^{18}+1}{17^{19}+1}< \frac{17^{18}+1+16}{17^{19}+1+16}=\frac{17^{18}+17}{17^{19}+17}=\frac{17\left(17^{17}+1\right)}{17\left(17^{18}+1\right)}=\frac{17^{17}+1}{17^{18}+1}=B\)
Vậy A < B
Bài 2:
Ta thấy C < 1
=> C = \(\frac{98^{99}+1}{98^{89}+1}< \frac{98^{99}+1+97}{98^{89}+1+97}=\frac{98^{99}+98}{98^{89}+98}=\frac{98\left(98^{98}+1\right)}{98\left(98^{88}+1\right)}=\frac{98^{98}+1}{98^{88}+1}=D\)
Vậy C < D
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\)\(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(A=\frac{17^{18}-2}{17^{19}-2}< \frac{17^{18}-2-32}{17^{19}-2-32}=\frac{17^{18}-34}{17^{19}-34}=\frac{17\left(17^{17}-2\right)}{17\left(17^{18}-2\right)}=\frac{17^{17}-2}{17^{18}-2}=B\)
\(\Rightarrow\)\(A< B\)
Vậy \(A< B\)
Chúc bạn học tốt ~
Công thức: \(\frac{a}{b}< \frac{a+c}{b+c}\left(\frac{a}{b}< 1;a;b;c\inℕ^∗\right)\)
Ta có:
\(A=\frac{17^{18}-2}{17^{19}-2}< B=\frac{17^{17}-2-32}{17^{18}-2-32}=\frac{17^{17}-34}{17^{18}-34}=\frac{17\left(17^{17}-2\right)}{17\left(17^{18}-2\right)}=\frac{17^{17}-2}{17^{18}-2}\)
Từ đó ta kết luận A < B
Có :
M = 19.101.17.10101/19.10101.17.101
= 1
Vì 1 = 19/19 > 18/19
=> M > N
Tk mk nha