Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=\left(\frac{1}{2^2}-1\right).\left(\frac{1}{3^2}-1\right).\left(\frac{1}{4^2}-1\right).........\left(\frac{1}{100^2}-1\right)\)
\(\Rightarrow A=\frac{1-2^2}{2^2}.\frac{1-3^2}{3^2}.\frac{1-4^2}{4^2}............\frac{1-100^2}{100}\)
\(\Rightarrow A=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}............\frac{-9999}{100^2}\)
\(\Rightarrow A=\frac{-1.3}{2^2}.\frac{-2.4}{3^2}.\frac{-3.5}{4^2}...............\frac{-99.101}{100^2}\)
\(\Rightarrow A=\frac{-\left(1.2.3.............99\right).\left(3.4.5............101\right)}{\left(2.3.4......100\right).\left(2.3.4.............100\right)}\)
\(\Rightarrow A=\frac{-1.101}{100.2}=\frac{-101}{200}\)
Vậy \(A=\frac{-101}{200}\)
Chúc bn học tốt
Ta có : \(A=\left(1-\frac{1}{2}\right)\left(1-\frac{1}{3}\right)...\left(1-\frac{1}{19}\right)\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}.\frac{2}{3}....\frac{18}{19}.\frac{19}{20}\)
\(=\frac{1.2....18.19}{2.3...19.20}\)
\(=\frac{1}{20}>\frac{1}{21}\)
Vậy A > 1/21
A>1/2
Xin lỗi mình đang bận để lúc khác mình sẽ giải chi tiết
Ta có : \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right)\left(\frac{1}{4^2}-1\right)...\left(\frac{1}{100^2}-1\right)\)
\(=\frac{-3}{2^2}.\frac{-8}{3^2}.\frac{-15}{4^2}...\frac{-99}{100^2}=-\frac{3.8.15...9999}{\left(2.3.4...100\right)\left(2.3.4...100\right)}=-\frac{\left(1.2.3...99\right)\left(3.4.5...101\right)}{\left(2.3.4...100\right)\left(2.3.4...100\right)}\)
\(=-\frac{101}{100.2}=-\frac{101}{200}< -\frac{100}{200}=-\frac{1}{2}\)
đúng đó bạn