Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\hept{\begin{cases}A=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}^{ }\\B=-\frac{1}{2020}-\frac{7}{2019^2}-\frac{5}{2019^3}-\frac{3}{2019^4}\end{cases}}\)
=>\(A-B=-\frac{1}{2020}-\frac{3}{2019^2}-\frac{5}{2019^3}-\frac{7}{2019^4}+\frac{1}{2020}+\frac{7}{2019^2}+\frac{5}{2019^3}+\frac{3}{2019^4}\)
\(=>A-B=\left(-\frac{3}{2019^2}+\frac{7}{2019^2}\right)+\left(-\frac{7}{2019^4}+\frac{3}{2019^4}\right)\)
=>\(A-B=\frac{4}{2019^2}+-\frac{4}{2019^4}\)
=>\(A-B=\frac{2019^2.4}{2019^4}-\frac{4}{2019^4}\)
=>\(A>B\)
cách này mình tự nghĩ
Lời giải:
\(A-B=\frac{4}{2019^2}-\frac{4}{2019^4}\)
Dễ thấy $0< 2019^2< 2019^4\Rightarrow \frac{4}{2019^2}> \frac{4}{2019^4}$
$\Rightarrow A-B=\frac{4}{2019^2}-\frac{4}{2019^4}>0$
$\Rightarrow A>B$
thầy ơi vì sao \(A-B=\frac{4}{2019^2}-\frac{4}{2019^4}\)
\(\frac{2\left|2018x-2019\right|+2019}{\left|2018x-2019\right|+1}\)
\(=\frac{\left(2\left(\left|2018x-2019\right|+1\right)\right)+2017}{\left|2018x-2019\right|+1}\)
\(=2+\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\frac{2017}{\left|2018x-2019\right|+1}\)có giá trị lớn nhất
\(\Rightarrow\left|2018x-2019\right|+1\)có giá trị nhỏ nhất
Mà \(\left|2018x-2019\right|\ge0\)
\(\Rightarrow\left|2018x-2019\right|+1\ge1\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left|2018x-2019\right|=0\)
\(\Leftrightarrow x=\frac{2019}{2018}\)
Vậy \(M_{MAX}=2019\)tại \(x=\frac{2019}{2018}\)
\(\frac{5^x+5^{x+1}+5^{x+2}}{31}=\frac{3^{2x}+3^{2x+1}+3^{2x+2}}{13}\)
\(\Rightarrow\frac{5^x\left(1+5+5^2\right)}{31}=\frac{3^{2x}\left(1+3+3^2\right)}{13}\)
\(\Rightarrow\frac{5^x\cdot31}{31}=\frac{3^{2x}\cdot13}{13}\)
\(\Rightarrow5^x=3^{2x}\)
Mà \(\left(5;3\right)=1\)
\(\Rightarrow x=2x=0\)
Sửa đề \(\frac{2019}{1}+\frac{2018}{2}+...+\frac{1}{2019}\)
Ta có: \(\frac{2019}{1}+\frac{2018}{2}+...+\frac{1}{2019}\)
\(=\left(2019+1\right)+\left(\frac{2018}{2}+1\right)+...+\left(\frac{1}{2019}+1\right)-2019\)
\(=2020+\frac{2020}{2}+...+\frac{2020}{2019}+\frac{2020}{2020}-2020\)
\(=\frac{2020}{2}+...+\frac{2020}{2019}+\frac{2020}{2020}\)
\(=2020.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)\)Thay vào biểu thức A ta được:
\(A=\frac{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}}{2020.\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2020}\right)}=\frac{1}{2020}\)
1
\(A=\frac{2019^{2019}+1}{2019^{2020}+1}< \frac{2019^{2019}+1+2018}{2019^{2020}+1+2018}=\frac{2019^{2019}+2019}{2019^{2020}+2019}=\frac{2019\left(2019^{2018}+1\right)}{2019\left(2019^{2019}+1\right)}\)
\(=\frac{2019^{2018}+1}{2019^{2019}+1}\)
2
\(M=\frac{100^{101}+1}{100^{100}+1}< \frac{100^{101}+1+99}{100^{100}+1+99}=\frac{100^{101}+100}{100^{100}+100}=\frac{100\left(100^{100}+1\right)}{100\left(100^{99}+1\right)}\)
\(=\frac{100^{100}+1}{100^{99}+1}=N\)
Đặt: \(A=\frac{1}{3}+\frac{2}{3^2}+\frac{3}{3^3}+...+\frac{2019}{3^{2019}}\)
\(\Rightarrow3A=1+\frac{2}{3}+\frac{3}{3^2}+...+\frac{2019}{3^{2018}}\)
\(\Rightarrow2A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2018}}-\frac{2019}{3^{2019}}\)
Đặt: \(B=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2018}}\)
\(\Rightarrow3B=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2017}}\)
\(\Rightarrow2B=1-\frac{1}{3^{2018}}\)
\(\Rightarrow B=\frac{1-\frac{1}{3^{2018}}}{2}\)
Thay vào \(2A\Rightarrow2A=1+\frac{\left(1-\frac{1}{3^{2018}}\right)}{2}-\frac{2019}{3^{2019}}\)
\(=1+\frac{1}{2}-\frac{1}{2.3^{2018}}-\frac{2019}{3^{2019}}< 1+\frac{1}{2}=\frac{3}{2}\)
\(\Rightarrow A< 0,75\left(đpcm\right)\)
Thật ra tui cũng không rõ lắm đâu. Cậu thử nhân A với \(\dfrac{2019}{2020}\)rồi lại cộng lại với A thử coi nào <Chú Ý : chưa chắc đã đúng >
Đặt A=\(\frac{1}{3}+\frac{2}{3^2}+.....+\frac{2019}{3^{2019}}\)
3A=\(1+\frac{2}{3}+.....+\frac{2019}{3^{2018}}\)
3A - A = \(\left(1+\frac{2}{3}+...+\frac{2018}{3^{2017}}+\frac{2019}{3^{2018}}\right)\) -\(\left(\frac{1}{3}+....+\frac{2017}{3^{2017}}+\frac{2018}{3^{2018}}+\frac{2019}{3^{2019}}\right)\)
2A = \(1+\frac{1}{3}+...+\frac{1}{3^{2018}}-\frac{2019}{3^{2019}}\)
Đặt B=\(1+\frac{1}{3}+....+\frac{1}{3^{2018}}\)
3B =\(3+1+....+\frac{1}{3^{2017}}\)
3B - B=\(\left(3+1+....+\frac{1}{3^{2017}}\right)\)-\(\left(1+\frac{1}{3}+...+\frac{1}{3^{2018}}\right)\)
2B =\(3-\frac{1}{3^{2018}}\)
Ta có:2A= B - \(\frac{2019}{3^{2019}}\)
4A = 2B -\(\frac{2.2019}{3^{2019}}\)
4A=\(\left(3-\frac{1}{3^{2018}}\right)\)-\(\frac{2.2019}{3^{2019}}\)
A=\(\frac{3}{4}-\frac{1}{3^{2018}.4}-\frac{2019}{3^{2019}.2}\)<\(\frac{3}{4}\)=0,75
Suy ra :\(\frac{1}{3}+\frac{2}{3^2}+...+\frac{2019}{3^{2019}}\)< 0,75 (đpcm)
Tham khảo
https://hoc24.vn/hoi-dap/question/814814.html
B=11.2+13.4+15.6+....+12019.2020
⇒2B=21.2+23.4+25.6+....+22019.2020
<1+12.3+13.4+14.5+15.6+....+12018.2019+12019.2020
2B<1+3−22.3+4−33.4+5−44.5+....+2019−20182018.2019+2020−20192019.2020
2B<1+12−13+13−14+...+12019−12020
2B<1+12−12020<1+12
B<34
---------------------
Đặt 22018=a;32019=b;52020=c(a,b,c>0)
A=aa+b+bb+c+cc+a>aa+b+c+ba+b+c+ca+b+c=1
⇒A>1>34>B