Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(8^5=\left(2^3\right)^5=2^{15}\)và \(32^3=\left(2^5\right)^3=2^{15}\Rightarrow8^5=32^3\)
b/ \(27^4=\left(3^3\right)^4=3^{12}\) và \(9^6=\left(3^2\right)^6=3^{12}\Rightarrow27^4=9^6\)
c/ \(23^{17}-23^{16}=23^{16}\left(23-1\right)=22.23^{16}\)
\(23^{16}-23^{15}=23^{15}\left(23-1\right)=22.23^{15}\)
\(\Rightarrow22.23^{16}>22.23^{15}\Rightarrow23^{17}-23^{16}>23^{16}-23^{15}\)
d/ \(\frac{3^{2015}+1}{3^{2016}}=\frac{1}{3}+\frac{1}{3^{2016}}\) và \(\frac{3^{2016}+1}{3^{2017}+1}=\frac{3^{2017}+3}{3\left(3^{2017}+1\right)}=\frac{3^{2017}+1+2}{3\left(3^{2017}+1\right)}=\frac{1}{3}+\frac{2}{3}.\frac{1}{3^{2017}+1}\)
\(\frac{1}{3^{2016}}>\frac{1}{3^{2017}}>\frac{1}{3^{2017}+1}>\frac{2}{3}.\frac{1}{3^{2017}+1}\)
\(\Rightarrow\frac{3^{2015}+1}{3^{2016}}>\frac{3^{2016}+1}{3^{2017}+1}\)
Câu cuối phân tích tương tự
a)\(\frac{-23}{47}\)và\(\frac{-31}{61}\)
= -23x61= -1403
và
=-31x47= -1457
vậy là \(\frac{-23}{47}\)>\(\frac{-31}{61}\)
vì -1403 > -1457
câu b) cũng như vậy
\(49\frac{8}{23}-\left(5\frac{7}{32}+14\frac{8}{23}\right)\)
\(=\left(49\frac{8}{23}-14\frac{8}{23}\right)-5\frac{7}{32}\)
\(=\left(49-14\right)+\left(\frac{8}{23}-\frac{8}{23}\right)+5\frac{7}{32}\)
\(=35+5\frac{7}{32}\)
\(=34\frac{32}{32}+5\frac{7}{32}\)
\(=\left(34+5\right)+\left(\frac{32}{32}+\frac{7}{32}\right)\)
\(=39+\frac{39}{32}\)
\(=39\frac{39}{32}=40\frac{7}{32}\)
\(B=\frac{23^{41}+1}{23^{42}+1}\)
Vì B < 1
\(\Rightarrow B=\frac{23^{41}+1}{23^{42}+1}< \frac{23^{41}+1+22}{23^{42}+1+22}=\frac{23^{41}+23}{23^{42}+23}=\frac{23(23^{40}+1)}{23\left(23^{41}+1\right)}=\frac{23^{40}+1}{23^{41}+1}=A\)
P/s: Hoq chắc
ta có
\(B=\frac{23^{41}+1}{23^{42}+1}< \frac{23^{41}+1+22}{23^{42}+1+22}=\frac{23^{41}+23}{23^{42}+23}=\frac{23\left(23^{40}+1\right)}{23\left(23^{41}+1\right)}=\frac{23^{40}+1}{23^{41}+1}=A\)
\(\Rightarrow B< A\)