Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=333^444
A=(333^4)^111
A=1332^111
B=444^333
B=(444^3)^111
B=1332^111
Vì 1332^111=1332^111
Nên => A=B
333^444=333^(4.111)=(333^4)^111
444^333=444^(3.111)=(444^3)^111
So sánh 333^4 với 444^3:
333^4=(111.3)^4=111^4.3^4=111^4.81
444^3=(111.4)^3=111^3.4^3=111^3.64
Vì 111^4.81>111^3.64 => 333^4>444^3 => A>B.
\(A=333^{444}=\left(3.111\right)^{444}=3^{444}.111^{444}=\left(3^4\right)^{111}.111^{444}=81^{111}.111^{444}\)
\(B=444^{333}=\left(4.111\right)^{333}=4^{333}.111^{333}=\left(4^3\right)^{111}.111^{333}=64^{111}.111^{333}\)
Vì 81111 > 64111 và 111444 > 111333
=> 81111.111444 > 64111.111333
hay 333444 > 444333
Vậy A > B.
Ta có: 333^444= 111^444 x 3^444
444^333 = 111^333 x 4^333
Tách: 3^444 = (3^4)^111 =81^111 <=>4^333 = (4^3)^111 = 64^111
Mà: {111^444 > 111^333 (1)
{81^111 > 64^111 hay: (3^4)^111 > (4^3)^111 (2)
Từ (1) và (2) ta có:333^444 > 444^333
Ta có: A=333^444=(333^4)^111
B=444^333=(444^3)^111
A và B đã có cùng số mũ 111. Bây giờ ta so sánh 333^4 với 444^3:
333^4=(3x111)^4=3^4x111^4=81x111^4
444^3=(4x111)^3=4^3x111^3=64x111^3
Rõ ràng ta thấy 81x111^4>64x111^3 suy ra 333^4>444^3
Từ đó suy ra A>B.
Ta có:333^444=(3x111)^4x111
333^444=(3^4)^111
333^444=81^111
Ta có:444^333=(4x111)^3x111
444^333=(4^3)^111
444^333=64^111
Vì 81 > 64.Nên 81^111 > 64^111
Vậy 333^444 > 444^333.
Bài giải
a, \(3^{450}=\left(3^3\right)^{150}=9^{150}\)
\(5^{300}=\left(5^2\right)^{150}=25^{150}\)
\(\text{Vì }9^{150}< 25^{150}\) \(\Rightarrow\text{ }3^{450}< 5^{300}\)
b, \(333^{444}=\left(333^4\right)^{111}=12296370321^{111}\)
\(444^{333}=\left(444^3\right)^{111}=87528384^{111}\)
Vì \(12296370321^{111}>87528384^{111}\) \(\Rightarrow\text{ }333^{444}>444^{333}\)
Bài giải
a, \(3^{450}=\left(3^3\right)^{150}=9^{150}\)
\(5^{300}=\left(5^2\right)^{150}=25^{150}\)
\(\text{Vì }9^{150}< 25^{150}\) \(\Rightarrow\text{ }3^{450}< 5^{300}\)
b, \(333^{444}=\left(333^4\right)^{111}=12296370321^{111}\)
\(444^{333}=\left(444^3\right)^{111}=87528384^{111}\)
Vì \(12296370321^{111}>87528384^{111}\) \(\Rightarrow\text{ }333^{444}>444^{333}\)
333444 =( 3.111)4.111= [ (3.111)4]111= [ 34. 1114] 111
444333= (4 .111)3.111= [ ( 4.111)3] 111= [ 43. 1113]111
mà 34=81, 1114 > 1113
43= 64 ,
nên 333444> 444333
\(Tacó:333^{444}=333^{4.111}=\left(333^4\right)^{111}\)
\(444^{333}=444^{3.111}=\left(444^3\right)^{111}\)
Ta lại có:\(333^4=\left(3.111\right)^4=81.111^4\left(1\right)\)
\(444^3=\left(4.111\right)^3=64.111^3\left(2\right)\)
Từ (1) và (2)=>\(333^4>444^3hay333^{444}>444^{333}\)
333^444 > 444^333
=> A>B