K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 2 2018

Đề có sai ko bạn , hình như đề phải là :

B = 1/210.212

Với đề của bạn thì :

211^2 < 201.2012

=> A > B

Với đề của mk thì :

210.212 = 210.211+210 = (210.211+211)-1 = 211.(210+1)-1 = 211^2-1 < 211^2

=> A < B

Tk mk nha

AH
Akai Haruma
Giáo viên
14 tháng 7 2023

Lời giải:

$A=\frac{2^{10}+2-1}{2^9+1}=\frac{2(2^9+1)-1}{2^9+1}=2-\frac{1}{2^9+1}$

$B=\frac{2^{12}+1}{2^{11}+1}=\frac{2(2^{11}+1)-1}{2^{11}+1}=2-\frac{1}{2^{11}+1}$

Vì $2^9+1< 2^{11}+1\Rightarrow \frac{1}{2^9+1}> \frac{1}{2^{11}+1}$

$\Rightarrow 2-\frac{1}{2^9+1}< 2-\frac{1}{2^{11}+1}$

$\Rightarrow A< B$

3 tháng 4 2017

\(119H=\frac{119\left(119^{209}+1\right)}{119^{210}+1}=\frac{119^{210}+119}{119^{210}+1}=1+\frac{118}{119^{210}}\)

\(119K=\frac{119\left(119^{210}+1\right)}{119^{211}+1}=\frac{119^{211}+119}{119^{211}+1}=1+\frac{118}{119^{211}+1}\)

Vì 119211+1>119210+1 nên \(\frac{118}{119^{211}+1}< \frac{118}{119^{210}+1}\)

\(=>119K< 119H\)

\(=>K< H\)

10 tháng 5 2021

a,\(A=\frac{1}{5}+\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{100}}\)

\(=>5A=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{99}}\)

\(=>5A-A=1-\frac{1}{5^{100}}=>A=\frac{1-\frac{1}{5^{100}}}{4}\)

b, Ta có \(1-\frac{1}{5^{100}}< 1=>\frac{1-\frac{1}{5^{100}}}{4}< \frac{1}{4}\)hay \(A< \frac{1}{4}\)

28 tháng 6 2015

\(A=1+\frac{1}{2}+...+\frac{1}{2^{100}}\)

=>\(2A=2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\)

=>2A-A=\(\left(2+1+\frac{1}{2}+...+\frac{1}{2^{99}}\right)-\left(1+\frac{1}{2}+...+\frac{1}{2^{100}}\right)=2-\frac{1}{2^{100}}<2\)

Vậy A<B

28 tháng 6 2015

=> \(\frac{1}{2}\)A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{101}}\)

=> A - \(\frac{1}{2}\) A = \(\frac{1}{2}\)A = \(\frac{1}{2^{101}}-1\)

=> A = \(\frac{\frac{1}{2^{101}}-1}{2}=\frac{\frac{1}{2^{101}}}{2}-\frac{1}{2}=\frac{1}{2^{102}}-\frac{1}{2}<1<2\)

=> A < B