K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 3 2018

\(\dfrac{2013}{2013+2014}< \dfrac{2013}{2013+2013}=\dfrac{1}{2}\)

Tương tự cộng theo vế suy ra đpcm

16 tháng 3 2018

tệ quá bạn ơi

3 tháng 3 2016

de ot la dau = nha

1 tháng 9 2016

A = (n + 2015)(n + 2016) + n2 + n

(n + 2015)(n + 2015 + 1) + n(n + 1)

Tích 2 số tự nhiên liên tiếp luôn chia hết cho 2

=> (n + 2015)(n + 2015 + 1) chia hết cho 2

      n(n + 1) chia hết cho 2

=> (n + 2015)(n + 2015 + 1) + n(n + 1) chia hết cho 2

=> A chia hết cho 2 với mọi n \(\in\) N (đpcm)

27 tháng 1 2016

\(N=\frac{2012+2013+2014}{2013+2014+2015}=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)

Ta thấy: \(\frac{2012}{2013}>\frac{2012}{2013+2014+2015}\)

\(\frac{2013}{2014}>\frac{2013}{2013+2014+2015}\)

\(\frac{2014}{2015}>\frac{2014}{2013+2014+2015}\)

\(\Rightarrow M=\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}>N=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)

Vậy M>N

4 tháng 1 2016

Xét N có:

\(N=\frac{2012+2013+2014}{2013+2014+2015}=\frac{2012}{2013+2014+2015}+\frac{2013}{2013+2014+2015}+\frac{2014}{2013+2014+2015}\)

Ta các số hạng của M và N có:

\(\frac{2012}{2013}>\frac{2012}{2013+2014+2015}\) (1)

\(\frac{2013}{2014}>\frac{2013}{2013+2014+2015}\) (2)

\(\frac{2014}{2015}>\frac{2014}{2013+2014+2015}\) (3)

Từ (1);(2);(3) => M >

 

 

6 tháng 5 2015

Ta có: \(\frac{2013}{2014}>\frac{2013}{2014+2015}\) (1)
\(\frac{2014}{2015}>\frac{2014}{2014+2015}\) (2)
ộng caác bất đẳng thứa (1) và (2) vào vế với vế:
\(\frac{2013}{2014}+\frac{2014}{2015}>\frac{2013+2014}{2014+2015}\Rightarrow A>B\)

6 tháng 5 2015

cảm ơn các bạn                         

15 tháng 4 2016

A = \(\frac{2013}{2014}+\frac{2014}{2015}>\frac{1}{2}+\frac{1}{2}=1\)

\(B=\frac{2013+2014+2015}{2014+2015+2016}<1\)

\(Vậy:A>B\)

Đúng nha Nguyễn Bình Minh

5 tháng 6 2016

so sánh:

\(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}\)  và\(B=\) \(\frac{2013+2014+2015}{2014+2015+2016}\)

                                                             \(B=\frac{2013}{2014+2015+2016}+\frac{2014}{2014+2015+2016}+\frac{2015}{2014+2015+2016}\)

Ta có: \(\frac{2013}{2014}>\frac{2013}{2014+2015+2016}\)

          \(\frac{2014}{2015}>\frac{2014}{2014+2015+2016}\)

          \(\frac{2015}{2016}>\frac{2015}{2014+2015+2016}\)

\(\Rightarrow\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2016}>\frac{2013+2014+2015}{2014+2015+2016}\)

Vậy: \(A>B\)