K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2017

a/ Ta có :

\(A=2008.2012=2008.\left(2009+3\right)=2008.2009+2008.3\)\(\left(1\right)\)

\(B=2009^2=2009.2009=2009.\left(2008+1\right)=2009.2008+2009\left(2\right)\)

Từ \(\left(1\right)+\left(2\right)\Leftrightarrow A>B\)

b/ tương tự

15 tháng 8 2018

A>B

bn nhé

tk mk ik

15 tháng 8 2018

a>b chúc bạn học tốt

^__^

b: \(=\dfrac{2014\cdot2015^2+2014\cdot2016-2016\cdot2015^2+2016\cdot2014}{2014\cdot2013^2-2014\cdot2012-2012\cdot2013^2-2012\cdot2014}\)

\(=\dfrac{2015^2\cdot\left(-2\right)+2\cdot\left(2015^2-1\right)}{2013^2\cdot\left(-2\right)-2\cdot\left(2013^2-1\right)}\)

\(=\dfrac{\left(-2\right)\cdot\left(2015^2-2015^2+1\right)}{\left(-2\right)\cdot\left(2013^2+2013^2-1\right)}=\dfrac{1}{2\cdot2013^2}\)

22 tháng 9 2019

Dễ thấy: \(2008^3+1>0\)\(2008^2-2007>0\)

Nên \(\frac{2008^3+1}{2008^2-2007}>0\Leftrightarrow A>0\)

và \(2009-2010< 0\)\(2009^3-1>0\)

\(\Rightarrow\frac{2009^3-1}{2009-2010}< 0\Leftrightarrow B< 0\)

Vậy A > B

4 tháng 7 2019

Số số hạng của tổng B là:

\(\frac{\left(2015-1\right)}{1}+1=2015\)(số hạng)

\(B=\frac{\left(1+2015\right)\cdot2015}{2}=2031120\)

\(A=\left(1^2-2^2\right)+\left(3^2-4^2\right)+\left(5^2-6^2\right)+...+\left(2013^2-2014^2\right)+2015^2\)

\(A=\left(-3\right)+\left(-7\right)+\left(-11\right)+...+\left(-4027\right)+4060225\)

Số số hạng của tổng A thuộc nguyên âm là:

\(\frac{2014}{2}=1007\)(số hạng)

\(A=\frac{\left(-3\right)+\left(-4027\right)\cdot1007}{2}+4060225\)

\(A=\left(-2029105\right)+4060225\)

\(A=2031120\)

Mà \(2031120=2031120\)

\(\Rightarrow A=B\)

4 tháng 7 2019

\(A=1^2-2^2+3^2-4^2+...-2014^2+2015^2\)

\(A=1+\left(3^2-2^2\right)+\left(5^2-4^2\right)+...+\left(2015^2-2014^2\right)\)

\(A=1+\left(3-2\right).\left(2+3\right)+\left(4-5\right).\left(4+5\right)+...+\left(2015-2014\right).\left(2014+2015\right)\)

\(A=1+2+3+4+...+2015=B\)

1 tháng 11 2016

Áp dụng bđt \(\frac{\sqrt{a}+\sqrt{b}}{2}< \sqrt{\frac{a+b}{2}}\) với a > 0; b > 0; a khác b ta có:

\(\frac{\sqrt{2016}+\sqrt{2014}}{2}< \sqrt{\frac{2016+2014}{2}}\)

\(\Rightarrow\frac{\sqrt{2016}+\sqrt{2014}}{2}< \sqrt{\frac{4030}{2}}\)

\(\Rightarrow\sqrt{2016}+\sqrt{2014}< \sqrt{2015}.2\)

\(\Rightarrow\sqrt{2016}-\sqrt{2015}< \sqrt{2015}-\sqrt{2014}\)

ta có  2015 x 2017 >2017^2 -2 

 2016 x 2018 > 2016^2 

=> A> B

23 tháng 9 2018

A=2012x2014=2012x(2012+2)=2012^2+4024

B=2013^2=(2012+1)^2=2012^2+2x2012+1=2012^2+2025

=>A<B 

chúc bạn học tốt~~~

23 tháng 9 2018

Bài 1 : 

\(a)\)\(A=2012.2014=\left(2013-1\right)\left(2013+1\right)=2013^2-1< 2013^2=B\)

Vậy \(A< B\)

\(b)\)\(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(2A=\left(3-1\right)\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(2A=\left(3^2-1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(2A=\left(3^4-1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(2A=\left(3^8-1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)

\(2A=\left(3^{16}-1\right)\left(3^{16}+1\right)\)

\(2A=3^{32}-1\)

\(A=\frac{3^{32}-1}{2}< 3^{32}-1=B\)

\(c)\)\(A=2017^2-17^2=\left(2017-17\right)\left(2017+17\right)=2000.2034>2000.2000=2000^2=B\)

Vậy \(A>B\)

5 tháng 9 2021

A=\(2016^2=2016.2016\)

B=\(2015.2017=(2015+1)(2017-1)=2016.2016\)

=> A=B = 2016.2016

5 tháng 9 2021

\(B=2015.2017=\left(2016-1\right)\left(2016+1\right)=2016^2-1< 2016^2=A\)