Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x=\left(1-\dfrac{1}{\sqrt{4}}\right).\left(1-\dfrac{1}{\sqrt{16}}\right).\left(1-\dfrac{1}{\sqrt{36}}\right).\left(1-\dfrac{1}{\sqrt{64}}\right).\left(1-\dfrac{1}{\sqrt{100}}\right)\)
\(x=\left(1-\dfrac{1}{2}\right).\left(1-\dfrac{1}{4}\right).\left(1-\dfrac{1}{6}\right).\left(1-\dfrac{1}{8}\right).\left(1-\dfrac{1}{10}\right)\)
\(x=\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}.\dfrac{7}{8}.\dfrac{9}{10}\)
\(x=\dfrac{63}{256}\)
và \(y=\sqrt{20+0,25}\)
\(y=\sqrt{20,25}\)
\(y=4,5\)
Do 4,5 > \(\dfrac{63}{256}\)
=> x<y
a: \(=2\cdot\dfrac{5}{4}-3\cdot\dfrac{7}{6}+4\cdot\dfrac{9}{8}=\dfrac{5}{2}-\dfrac{7}{2}+\dfrac{9}{2}=\dfrac{7}{2}\)
b: \(=18-16\cdot\dfrac{1}{2}+\dfrac{1}{16}\cdot\dfrac{3}{4}\)
=10+3/64
=643/64
c: \(=\dfrac{2}{3}\cdot\dfrac{9}{4}-\dfrac{3}{4}\cdot\dfrac{8}{3}+\dfrac{7}{5}\cdot\dfrac{5}{14}=\dfrac{3}{2}-2+\dfrac{1}{2}=2-2=0\)
Bài 1:
a: \(\Leftrightarrow2-3\sqrt{x}+5\sqrt{x}=8\)
=>2 căn x=6
=>căn x=3
=>x=9
b: \(\Leftrightarrow\dfrac{1}{\sqrt{x}}\cdot\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{6}\right)=\dfrac{2}{3}\)
\(\Leftrightarrow\dfrac{1}{\sqrt{x}}=\dfrac{2}{3}:\dfrac{2}{3}=1\)
=>x=1
a: \(=7\cdot\dfrac{6}{7}-5+\dfrac{3\sqrt{2}}{2}=1+\dfrac{3}{2}\sqrt{2}\)
b: \(=-\dfrac{8}{7}-\dfrac{3}{5}\cdot\dfrac{5}{8}+\dfrac{1}{2}=\dfrac{-16+7}{14}-\dfrac{3}{8}=\dfrac{-9}{14}-\dfrac{3}{8}\)
\(=\dfrac{-72-42}{112}=\dfrac{-114}{112}=-\dfrac{57}{56}\)
c: \(=20\sqrt{5}-\dfrac{1}{4}\cdot\dfrac{4}{3}+\dfrac{3}{2}=20\sqrt{5}+\dfrac{3}{2}-\dfrac{1}{3}=20\sqrt{5}+\dfrac{7}{6}\)
Ta có : \(\sqrt{961}< \sqrt{1089}\)
\(\left(\dfrac{1}{\sqrt{6}}-1\right)< \left(\dfrac{1}{\sqrt{7}}+1\right)\)
=> x<y
Goodluck
Ta có:
+) \(\sqrt{961}-\left(\dfrac{1}{\sqrt{6}}-1\right)\)
\(=31-\dfrac{1}{\sqrt{6}}+1\)
\(=32-\dfrac{1}{\sqrt{6}}\)
+)\(\sqrt{1089}-\left(\dfrac{1}{\sqrt{7}}+1\right)\)
\(=33-\dfrac{1}{\sqrt{7}}-1\)
\(=32-\dfrac{1}{\sqrt{7}}\)
* Ta lại có:
\(\sqrt{6}< \sqrt{7}\)
\(\Rightarrow\dfrac{1}{\sqrt{6}}>\dfrac{1}{\sqrt{7}}\)
\(\Rightarrow32-\dfrac{1}{\sqrt{6}}< 32-\dfrac{1}{\sqrt{7}}\) hay \(\sqrt{961}-\left(\dfrac{1}{\sqrt{6}}-1\right)< \text{}\text{}\) \(\sqrt{1089}-\left(\dfrac{1}{\sqrt{7}}+1\right)\)
Vậy \(\sqrt{961}-\left(\dfrac{1}{\sqrt{6}}-1\right)< \text{}\text{}\) \(\sqrt{1089}-\left(\dfrac{1}{\sqrt{7}}+1\right)\)
Bài này tớ giải bừa thoi, tớ đọc lại cũng thấy khó hiểu nữa mà
a)\(\sqrt{1}\)+\(\sqrt{9}\)+\(\sqrt{25}\)+\(\sqrt{49}\)+\(\sqrt{81}\)
=1+3+5+7+9
=25
b)=\(\dfrac{1}{2}\)+\(\dfrac{1}{3}\)+\(\dfrac{1}{6}\)+\(\dfrac{1}{4}\)
=\(\dfrac{6}{12}\)+\(\dfrac{4}{12}\)+\(\dfrac{2}{12}\)+\(\dfrac{3}{12}\)
=\(\dfrac{15}{12}\)
c) =0,2+0.3+0,4
= 0.9
d) =9-8+7
=8
j) =1,2-1,3+1.4
= (-0,1)+1,4
=1,4
g) \(\dfrac{2}{5}\)+\(\dfrac{5}{2}\)+\(\dfrac{9}{10}\)+\(\dfrac{3}{4}\)
= (\(\dfrac{4}{10}\)+\(\dfrac{15}{10}\)+\(\dfrac{9}{10}\))+\(\dfrac{3}{4}\)
= \(\dfrac{14}{5}\)+\(\dfrac{3}{4}\)
=\(\dfrac{56}{20}\)+\(\dfrac{15}{20}\)
= \(\dfrac{71}{20}\)
Nhớ tick cho mk nha~
5) \(\left(-2\right)^2+\sqrt{36}-\sqrt{9}+\sqrt{25}\)
=\(4+6-3+5\)
=\(12\)
2) \(\dfrac{11}{25}.\left(-24,8\right)-\dfrac{11}{25}.75,2\)
=\(\dfrac{11}{25}.\left(-24,8-75,2\right)\)
=\(\dfrac{11}{25}.\left(-100\right)\)
=\(-44\)