\(\frac{10^5+4}{10^5-1}\)và B = \(\frac{10^5+3}{1...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có :

\(A=\frac{10^5+4}{10^5-1}=\frac{10^5-1+5}{10^5-1}=\frac{10^5-1}{10^5-1}+\frac{5}{10^5-1}=1+\frac{5}{10^5-1}\)

\(B=\frac{10^5+3}{10^5-2}=\frac{10^5-2+5}{10^5-2}=\frac{10^5-2}{10^5-2}+\frac{5}{10^5-2}=1+\frac{5}{10^5-2}\)

Do \(1+\frac{5}{10^5-1}>1+\frac{5}{10^5-2}\)

\(\Rightarrow A>B\)

22 tháng 3 2017

cũng hơi dễ!!

c1 :ở tử và mẫu của A và B đều là 10 (= nhau)

ở tử của A và B đều là phép +

ở mẫu của A và B đều là phép -

Suy ra: của A= 4+1=5
            của B= 3+2=5

Vậy: A và B bằng nhau (A=B)

c2: tính bằng máy tính: A=1,000050001

                                   B=1,000050001

Vậy A=B

đúng thì k cho mik nha!!!

2 tháng 2 2017

(10^5+4)/(10^5-1)=(10^5-1+5)/(10^5-1)={(10^5-1)/(10^5-1)}+{5/(10^5-1)}=1+{5/(10^5-1)}    (1)

(10^5+3)/(10^5-2)=(10^5-2+5)/(10^5-2)={(10^5-2)/(10^5-2)}+{5/(10^5-2)}=1+{5/(10^5-2)}    (2)

từ 1 và 2 ta so sánh{5/(10^5-1)} và {5/(10^5-2)}....

suy ra ... kết quả

2 tháng 2 2017

có thẻ 50k ko anh giải cho

5 tháng 4 2019

Dùng phương pháp phần thừa với số 1

Ta có: \(\frac{10^5+4}{10^5-1}-1=\frac{10^5+4}{10^5-1}-\frac{10^5-1}{10^5-1}=\frac{10^5+4-10^5+1}{10^5-1}=\frac{5}{10^5-1}\)

           \(\frac{10^5+3}{10^5-2}-1=\frac{10^5+3}{10^5-2}-\frac{10^5-2}{10^5-2}=\frac{10^5+3-10^5+2}{10^5-2}=\frac{5}{10^5-2}\)

Mà \(\frac{5}{10^5-1}< \frac{5}{10^5-2}\)nên \(\frac{10^5+4}{10^5-1}< \frac{10^5+3}{10^5-2}\)

12 tháng 6 2020

Ta có A - 1 = \(\frac{10^5+4}{10^5-5}-1=\frac{10^5+4-10^5+5}{10^5-5}=\frac{9}{10^5-5}\)

Lại có : B -  1 = \(\frac{10^5+3}{10^5-6}-1=\frac{10^5+3-10^5+6}{10^5-6}=\frac{9}{10^5-6}\)

Vì \(\frac{9}{10^5-5}< \frac{9}{10^5-6}\Rightarrow A-1< B-1\Rightarrow A< B\)

3 tháng 3 2018

 2 hoặc 42

3 tháng 3 2018

Giải như mà mình không chắc nha:

a) \(A=\frac{10^8+1}{10^9+1}\)và \(\frac{10^9+1}{10^{10}+1}\)

Ta có:

  \(\frac{10^8+1}{10^9+1}\Leftrightarrow\frac{10^8+1}{10^8+10+1}\Leftrightarrow\frac{1}{10+1}=\frac{1}{11}\)

\(\frac{10^9+1}{10^{10}+1}=\frac{10^8+10+1}{10^8+10+10+1}=\frac{10+1}{10+10+1}=\frac{11}{21}\)

Ta có: \(\frac{1}{11}< \frac{11}{21}\) Vậy ......

b) Bạn giải tương tự nha! Lười lắm :v

a) A=\(\frac{178}{179}+\frac{179}{180}+\frac{183}{181}\)

ta có :

 \(A=\left(1-\frac{1}{179}\right)+\left(1-\frac{1}{180}\right)+\left(1+\frac{2}{181}\right)\)

 \(\Rightarrow A=\left(1+1+1\right)-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)\)

\(\Rightarrow A=3-\left(\frac{1}{179}-\frac{1}{180}+\frac{2}{181}\right)< 3\)

Vậy \(A< 3\)

2 tháng 5 2019

a. Ta có :

\(\frac{178}{179}< 1\left(\frac{1}{179}\right)\)

\(\frac{179}{180}< 1\left(\frac{1}{180}\right)\)

\(\frac{183}{181}>1\left(\frac{3}{181}\right)\left(1\right)\)

Mà \(\frac{3}{181}>\frac{1}{179}+\frac{1}{180}\left(=\frac{359}{32220}< \frac{3}{181}\right)\left(2\right)\)

Từ \(\left(1\right)\&\left(2\right)\Rightarrow\frac{178}{179}+\frac{179}{180}+\frac{183}{181}< 1+1+1\)

Vậy \(A< 3\)