Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
giải giúp mk với mk đang cần gấp lắm!!! Mong các bạn giúp đỡ mk với!!!
\(A=\frac{2010}{2009}+\frac{2011}{2010}+\frac{2012}{2011}+\frac{2009}{2012}=\left(1+\frac{1}{2009}\right)+\left(1+\frac{1}{2010}\right)+\left(1+\frac{1}{2011}\right)+\frac{2009}{2012}>\left(1+\frac{1}{2012}\right)+\left(1+\frac{1}{2012}\right)+\left(1+\frac{1}{2012}\right)+\frac{2009}{2012}=\left(1+1+1\right)+\left(\frac{1}{2012}+\frac{1}{2012}+\frac{1}{2012}+\frac{2009}{2012}\right)=3+1=4\)Vì 1/2009,1/2010,1/2011>1/2012
Vậy A>4
A=2010/2009+2011/2010+2012/2011+2009/2012=4,00000148
vay A lon hon 4
A>4
a bang 2010/2009cong2012/2011cong2009/2012 bang4,00000148 vay A LON HON 4
mỗi số hạng trong biểu thức A đều nhỏ hơn 1 mà có 15 số nên tổng A sẽ nhỏ hơn 15
ta thay tong tren <1+1+1+1+1+1+1+1+1+1+1+1+1+1+1
hay tong tren be hon 15
1/1x2+1/2x3+....+1/2010x2011
=1-1/2+1/2-1/3+.......+1/2010-1/2011
=1-1/2011=2010/2011
ung ho va chon nha
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010}{2011}}{\frac{2012}{2013}}+\frac{\frac{2011}{2012}}{\frac{2013}{2014}}+\frac{\frac{2012}{2013}}{\frac{2014}{2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010}{2011}+\frac{2011}{2012}+\frac{2012}{2013}}{\frac{2012+2013+2014}{2013+2014+2015}}$
$\frac{\frac{2010+2011+2012}{2011+2012+2013}}{\frac{2012}{2013}+\frac{2013}{2014}+\frac{2014}{2015}}$
Xét tử:
\(2012+\frac{2011}{2}+\frac{2010}{3}+\frac{2009}{4}+...+\frac{1}{2012}\)
= \(\left(1+\frac{2011}{2}\right)+\left(1+\frac{2010}{3}\right)+...+\left(1+\frac{1}{2012}\right)+1\)
= \(\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}\)
= \(2013\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}\right)\)
Thay vào ta có:
A = \(\frac{2013\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2013}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2013}}\)
=> A = 2013
Mà 2013 chia hết cho 3
=> A chia hết cho 3
A=\(\frac{1+\frac{2011}{2}+1+\frac{2010}{3}+1+...+\frac{1}{2012}+1+1}{\frac{1}{2}+...+\frac{1}{2013}}\)
A=\(\frac{\frac{2013}{2}+\frac{2013}{3}+...+\frac{2013}{2012}+\frac{2013}{2013}}{\frac{1}{2}+...+\frac{1}{2013}}\)
A=\(\frac{2013\left(\frac{1}{2}+...+\frac{1}{2013}\right)}{\frac{1}{2}+...+\frac{1}{2013}}\)
A=2013
Mà 2013: 3 = 671
Vậy A : 3 dư 0 hay\(A⋮3\)