Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=\(\frac{2014}{2014^a}+\frac{2014}{2014^b}\)=B=\(\frac{2013}{2015^a}\)+\(\frac{2015}{2013^b}\)
Ta có: 2014/\(2014^a\)+2014/2014^b= 2013/2014^a + 1/2014^a +2015/2014^a - 1/2014^a
=(2013/2014^a + 2015/2014^b) + ( 1/2014^a + 1/2014^b)
= B + (1/2014^a + 1/2014^b)
*Nếu a=b thì A=B
*Nếu a>b thì (1/2014^a + 1/2014^b) >0
\(\Rightarrow\) A< B
*Nếu a<b thì (1/2014^a + 1/2014^b)>0
\(\Rightarrow\) A>B
\(\frac{30}{43}=\frac{1}{\frac{43}{30}}=\frac{1}{1+\frac{13}{30}}=\frac{1}{1+\frac{1}{\frac{30}{13}}}=\frac{1}{1+\frac{1}{2+\frac{4}{13}}}=\frac{1}{1+\frac{1}{2+\frac{1}{\frac{13}{4}}}}=\frac{1}{1+\frac{1}{2+\frac{1}{3+\frac{1}{4}}}}\)
=> a = 1; b = 2; c = 3; d = 4.
B= \(\frac{1}{199}\) + \(\frac{2}{198}\) + ... + \(\frac{198}{2}\) + \(\frac{199}{1}\)
B= ( \(\frac{1}{199}\) + 1) + ( \(\frac{2}{198}\) +1) +...+ ( \(\frac{198}{2}\) +1) +1 ( Mình tách 199 ra thành 199 số hạng rồi cộng thêm vào mỗi phân số)
B= \(\frac{200}{199}\) + \(\frac{200}{198}\) + \(\frac{200}{197}\) +...+\(\frac{200}{2}\)
B= 200( \(\frac{1}{199}\) + \(\frac{1}{198}\) +...+ \(\frac{1}{2}\) )
B= 200 ( \(\frac{1}{2}\) + \(\frac{1}{3}\) +...+ \(\frac{1}{198}\) + \(\frac{1}{199}\) ) = 200 A
Ta thấy A=1A, B=200A Suy ra \(\frac{A}{B}\) = \(\frac{1}{200}\)
A> \(\frac{10^n-2-2}{10^n-1-2}=\frac{10^n-4}{10^n-3}=B\)
=> A>B
Ta có :
\(\frac{1+2+3+...+a}{a}<\frac{1+2+3+...+b}{b}\)
\(\Leftrightarrow\frac{a\left(a+1\right)}{a}<\frac{b\left(b+1\right)}{b}\)
<=> a + 1 < b + 1
<=> a < b
có 1+2+3+...+a/a<1+2+3+...+b/b
=>(a+1)(a-1+1):2/a<(b+1)(b-1+1):2/b
<=>(a+1)a:2/a<(b+1)b;2/b
<=>a+1<b+1
<=>a<b
vậy a<b