Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tính hai vế à.!? Hay tính vế thứ nhất rồi với vế thứ 2.!???
1.Tính
a.\(\dfrac{7}{23}\left[(-\dfrac{8}{6})-\dfrac{45}{18}\right]=\dfrac{7}{23}.-\dfrac{12}{6}=-\dfrac{7}{6}\)
b.\(\dfrac{1}{5}\div\dfrac{1}{10}-\dfrac{1}{3}(\dfrac{6}{5}-\dfrac{9}{4})=2-(-\dfrac{7}{20})=\dfrac{47}{20}\)
c.\(\dfrac{3}{5}.(-\dfrac{8}{3})-\dfrac{3}{5}\div(-6)=-\dfrac{3}{2}\)
d.\(\dfrac{1}{2}.(\dfrac{4}{3}+\dfrac{2}{5})-\dfrac{3}{4}.(\dfrac{8}{9}+\dfrac{16}{3})=-\dfrac{19}{5}\)
e.\(\dfrac{6}{7}\div(\dfrac{3}{26}-\dfrac{3}{13})+\dfrac{6}{7}.(\dfrac{1}{10}-\dfrac{8}{5})=-\dfrac{61}{7}\)
Bài 2
a.\(1^2_5x+\dfrac{3}{7}=\dfrac{4}{5}\)
\(x=\dfrac{13}{49}\)
b.\(\left|x-1,5\right|=2\)
Xảy ra 2 trường hợp
TH1
\(x-1,5=2\)
\(x=3,5\)
TH2
\(x-1,5=-2\)
\(x=-0,5\)
Vậy \(x=3,5\) hoặc \(x=-0,5\) .
Ngại làm quá trời ơi,lần sau bn tách ra nhá làm vậy mỏi tay quá.
Mấy bài dễ tự làm nhé:D
1)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(\left\{{}\begin{matrix}\dfrac{a}{a+b}=\dfrac{bk}{bk+b}=\dfrac{bk}{b\left(k+1\right)}=\dfrac{k}{k+1}\\\dfrac{c}{c+d}=\dfrac{dk}{dk+d}=\dfrac{dk}{d\left(k+1\right)}=\dfrac{k}{k+1}\end{matrix}\right.\)
Ta có điều phải chứng minh
\(\left\{{}\begin{matrix}\dfrac{a}{a-b}=\dfrac{bk}{bk-b}=\dfrac{bk}{b\left(k-1\right)}=\dfrac{k}{k-1}\\\dfrac{c}{c-d}=\dfrac{dk}{dk-d}=\dfrac{dk}{d\left(k-1\right)}=\dfrac{k}{k-1}\end{matrix}\right.\)
Ta có điều phải chứng minh
1. Tính:
a. \(\dfrac{\text{−1 }}{\text{4 }}+\dfrac{\text{5 }}{\text{6 }}=\dfrac{-3}{12}+\dfrac{10}{12}=\dfrac{7}{12}\)
b. \(\dfrac{\text{5 }}{\text{12 }}+\dfrac{\text{-7 }}{8}=\dfrac{10}{24}+\dfrac{-21}{24}=\dfrac{-11}{24}\)
c. \(\dfrac{-7}{6}+\dfrac{-3}{10}=\dfrac{-35}{30}+\dfrac{-9}{30}=\dfrac{-44}{30}=\dfrac{-22}{15}\)
d.\(\dfrac{-3}{7}+\dfrac{5}{6}=\dfrac{-18}{42}+\dfrac{35}{42}=\dfrac{17}{42}\)
2. Tính :
a. \(\dfrac{2}{14}-\dfrac{5}{2}=\dfrac{2}{14}-\dfrac{35}{14}=\dfrac{-33}{14}\)
b.\(\dfrac{-13}{12}-\dfrac{5}{18}=\dfrac{-39}{36}-\dfrac{10}{36}=\dfrac{49}{36}\)
c.\(\dfrac{-2}{5}-\dfrac{-3}{11}=\dfrac{-2}{5}+\dfrac{3}{11}=\dfrac{-22}{55}+\dfrac{15}{55}=\dfrac{-7}{55}\)
d. \(0,6--1\dfrac{2}{3}=\dfrac{6}{10}--\dfrac{5}{3}=\dfrac{3}{5}+\dfrac{5}{3}=\dfrac{9}{15}+\dfrac{25}{15}=\dfrac{34}{15}\)
3. Tính :
a.\(\dfrac{-1}{39}+\dfrac{-1}{52}=\dfrac{-4}{156}+\dfrac{-3}{156}=\dfrac{-7}{156}\)
b.\(\dfrac{-6}{9}-\dfrac{12}{16}=\dfrac{2}{3}-\dfrac{3}{4}=\dfrac{8}{12}-\dfrac{9}{12}=\dfrac{-17}{12}\)
c. \(\dfrac{-3}{7}-\dfrac{-2}{11}=\dfrac{-3}{7}+\dfrac{2}{11}=\dfrac{-33}{77}+\dfrac{14}{77}=\dfrac{-19}{77}\)
d.\(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...\dfrac{1}{8.9}+\dfrac{1}{9.10}\)
\(=\dfrac{1}{1}+\dfrac{1}{10}\)
\(=\dfrac{10}{10}-\dfrac{1}{10}\)
= \(\dfrac{9}{10}\)
Chế Kazuto Kirikaya thử tham khảo thử đi !!!
Mấy câu trên kia dễ rồi mình chữa mình câu \(c\) bài \(3\) thôi nhé Kazuto Kirikaya
d) \(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)
\(=1-\dfrac{1}{10}\)
\(=\dfrac{9}{10}\)
1. Tìm x thuộc N:
\(\left(x-3\right)^6=\left(x-3\right)^7\)
\(\Leftrightarrow\left(x-3\right)^6-\left(x-3\right)^7=0\)
\(\Leftrightarrow\left(x-3\right)^6.\text{[}1-\left(x-3\right)\text{]}=0\)
\(\Leftrightarrow\left(x-3\right)^6.\left(4-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)(thỏa mãn \(x\in N\))
2.
Ta có: 6x=4y=3z
\(\Rightarrow\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{2x}{4}=\dfrac{3y}{9}=\dfrac{5z}{20}\)
\(=\dfrac{2x+3y-5z}{4+9-20}=\dfrac{-21}{-7}=3\)
\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=3.3=9\\z=3.4=12\end{matrix}\right.\)
\(\left\{{}\begin{matrix}1-\dfrac{2}{3}=\dfrac{1}{3}\\1-\dfrac{3}{4}=\dfrac{1}{4}\\1-\dfrac{4}{5}=\dfrac{1}{5}\\1-\dfrac{9}{10}=\dfrac{1}{10}\end{matrix}\right.\)
Vì:
\(\dfrac{1}{3}>\dfrac{1}{4}>\dfrac{1}{5}>...>\dfrac{1}{10}\)
nên:
\(\dfrac{2}{3}< \dfrac{3}{4}< \dfrac{4}{5}< ...< \dfrac{9}{10}\)
a)
Ta có:
\(\)\(\left\{{}\begin{matrix}\dfrac{3}{4}=\dfrac{2+1}{3+1}\\\dfrac{4}{5}=\dfrac{3+1}{4+1}\\\dfrac{5}{6}=\dfrac{4+1}{5+1}\\\dfrac{9}{10}=\dfrac{8+1}{9+1}\end{matrix}\right.\)
Suy ra quy luật:
Phân số tiếp theo chính là tử của p/s ban đầu +1/mẫu của p/s ban đầu +1
Vậy phân số sau phân số \(\dfrac{a}{b}\) là \(\dfrac{a+1}{b+1}\)
So sánh :
\(\dfrac{a}{b}\) và \(\dfrac{a+1}{b+1}\)
\(\dfrac{a}{b}=\dfrac{a\left(b+1\right)}{b\left(b+1\right)}=\dfrac{ab+a}{b^2+b}\)
\(\dfrac{a+1}{b+1}=\dfrac{b\left(a+1\right)}{b\left(b+1\right)}=\dfrac{ab+b}{b^2+b}\)
Vậy cần so sánh:
\(\dfrac{ab+a}{b^2+b}\) với \(\dfrac{ab+b}{b^2+b}\)
Cần so sánh:
\(ab+a\) và \(ab+b\)
Cần so sánh \(a\) với \(b\)
Nếu \(a>b\Rightarrow\dfrac{a}{b}>\dfrac{a+1}{b+1}\)
Nếu \(a< b\Rightarrow\dfrac{a}{b}< \dfrac{a+1}{b+1}\)
Nếu \(a=b\) \(\Rightarrow\dfrac{a}{b}=\dfrac{a+1}{b+1}=1\)
Còn cách khác ngắn hơn nhưng lười làm lắm :v
sao ko làm cách ngắn ngay từ đầu :(