Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2009A=\frac{2009^{2010}+2009}{2009^{2010}+1}=\)\(\frac{2009^{2010}+1+2008}{2009^{2010}+1}=1+\frac{2008}{2009^{2010}+1}\)
\(2009B=\frac{2009^{2009}+2009}{2009^{2009}+1}=\frac{2009^{2009}+1+2008}{2009^{2009}+1}\)\(=1+\frac{2008}{2009^{2009}+1}\)
Vì \(1+\frac{2008}{2009^{2010}+1}< 1+\frac{2008}{2009^{2009}+1}\) \(\Leftrightarrow A< B\)
\(A=\frac{2009^{2009}+1}{2009^{2010}+1}\Rightarrow2009A=\frac{2009^{2010}+2009}{2009^{2010}+1}\)
\(2009A=\frac{2009^{2010}+1}{2009^{2010}+1}+\frac{2008}{2009^{2010}+1}\)
\(2009A=1+\frac{2008}{2009^{2010}+1}\)
..... sory bn mk hơi luwoif chút nên bn tự lm tương tự vs phần B và so sánh nhé!^^
Mình làm câu a) nha!!!
+) \(A=2009^{2010}+2009^{2009}\)
\(=2009^{2009}.\left(2009+1\right)\)
\(=2009^{2009}.2010\)
+) \(B=2010^{2010}=2010^{2009}.2010\)
Vì \(2010^{2009}>2009^{2009}\)nên \(2010^{2009}.2010>2009^{2009}.2010\)hay \(B>A\)
Vậy \(A< B\)
Hok tốt nha^^
\(\frac{2008}{2009}+\frac{2009}{2010}+\frac{2010}{2011}+\frac{2011}{2008}=1-\frac{1}{2009}+1-\frac{1}{2010}+1-\frac{1}{2011}+1+\frac{3}{2008}\)
\(=4+\left(\frac{1}{2008}-\frac{1}{2009}\right)+\left(\frac{1}{2008}-\frac{1}{2010}\right)+\left(\frac{1}{2008}-\frac{1}{2011}\right)>4\)
10^2008+1/10^2009+1<10^2009+1/10^2010+1
10^2008+1/10^2009+1<10^2009+1/10^2010+1
Tớ chỉ biết đáp án thôi
k cho mk nha
Thanks