Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho a,b,c khác 0 t/m:
1/a+1/b+1/c=1/2018 và a+b+c=2018
cmr" 1/a^2019+1/b^2019+1/c^2019=1/(a^2019+b^2019+c^2019)
Ta có :
gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3gt⇒x2−xy−(5x−5y)−x+8=0⇒(x−y)(x−5)−(x−5)=−3⇒(5−x)(x−y−1)=3
Đến đây là dạng của phương trình ước số bạn chỉ cần xét ước của 33 là sẽ tìm được nghiệm nguyên của PT
b) \(\left(a^{2019}+b^{2019}\right)^2=\left(a^{2018}+b^{2018}\right)\left(a^{2020}+b^{2020}\right)\Leftrightarrow2a^{2019}b^{2019}=a^{2018}a^{2020}+a^{2020}b^{2018}\Leftrightarrow2ab=a^2+b^2\Leftrightarrow a=b\).
Do a, b dương nên a = b = 1.
Câu a thì bạn áp dụng BĐT Svacxo
Ta có: \(C=\dfrac{2019-2018}{2019+2018}\)
\(\Leftrightarrow C=\dfrac{\left(2019-2018\right)\left(2019+2018\right)}{\left(2019+2018\right)^2}\)
\(\Leftrightarrow C=\dfrac{2019^2-2018^2}{\left(2019+2018\right)^2}\)
Ta có: \(\left(2019+2018\right)^2=2019^2+2018^2+2\cdot2019\cdot2018\)
\(2019^2+2018^2=2019^2+2018^2+0\)
Do đó: \(\left(2019+2018\right)^2>2019^2+2018^2\)
\(\Leftrightarrow\dfrac{2019^2-2018^2}{\left(2019+2018\right)^2}< \dfrac{2019^2-2018^2}{2019^2+2018^2}\)
\(\Leftrightarrow C< D\)
Vì: \(a^{2018}+b^{2018}=a^{2019}+b^{2019}\)
\(\Leftrightarrow a^{2019}-a^{2018}+b^{2019}-b^{2018}=0\)
\(\Leftrightarrow a^{2018}\left(a-1\right)+b^{2018}\left(b-1\right)=0\) (1)
Vì \(a^{2019}+b^{2019}=a^{2020}+b^{2020}\)
\(\Leftrightarrow a^{2020}-a^{2019}+b^{2020}-b^{2019}=0\)
\(\Leftrightarrow a^{2019}\left(a-1\right)+b^{2019}\left(b-1\right)=0\) (2)
Từ (1) và (2)
\(\Rightarrow a^{2018}\left(a-1\right)+b^{2018}\left(b-1\right)=a^{2019}\left(a-1\right)+b^{2019}\left(b-1\right)\)
\(\Leftrightarrow a^{2019}\left(a-1\right)-a^{2018}\left(a-1\right)+b^{2019}\left(b-1\right)-b^{2018}\left(b-1\right)=0\)
\(\Leftrightarrow a^{2018}\left(a-1\right)\left(a-1\right)+b^{2018}\left(b-1\right)\left(b-1\right)=0\)
\(\Leftrightarrow a^{2018}\left(a-1\right)^2+b^{2018}\left(b-1\right)^2=0\)
Vì: \(\hept{\begin{cases}a^{2018}\left(a-1\right)^2\ge0\\b^{2018}\left(b-1\right)^2\ge0\end{cases}}\) mà tổng của 2 số này lại là 0
=> Mỗi số hạng này sẽ có tổng là 0
Ta có:
\(a^{2018}\left(a-1\right)^2=0\Leftrightarrow\orbr{\begin{cases}a^{2018}=0\\a-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a=0\\a=1\end{cases}}}\)
Tương tự với b thì cũng có: b = 0, b = 1
Vậy có 4 cặp a,b thỏa mãn:
(a,b) ={ (0,0) ; (0,1) ; (1,0) ; (1,1)
Vậy tổng của a + b có thể là 0,1,2
Ta có:
\(a^{2018}+b^{2018}+a^{2020}+b^{2020}=2a^{2019}+2b^{2019}\)
\(\Leftrightarrow\left(a^{2018}-2a^{2019}+a^{2020}\right)+\left(b^{2018}-2b^{2019}+b^{2020}\right)=0\)
\(\Leftrightarrow a^{2018}\left(a-1\right)^2+b^{2018}\left(b-1\right)^2=0\)
Ta thấy rằng VT \(\ge\)0 nên dấu = xảy ra khi
\(\left(a,b\right)=\left(0,0;0,1;1,0;1,1\right)\)
A = 2018^2 - 2016^2
A = (2018 - 2016)(2018 + 2016)
A = 2.4034
B = 2019^2 - 2017^2
B = (2019 - 2017)(2019 + 2017)
B = 2.4036
=> A < B
ggbgbgkbgbgkbokgbgobgkbkogokbgkobkogbkbgb,mb.gnl'g
câu trả lời ở bên dưới
gf'gbf
fgjfb
b
bk
gkbgobpgbogojbgmkh
gg
g
gg
g
g
g
g
g
g
gg
g
g
g
g
g
g
g
g
gg
g
g
g
g
g
g
fgfbgf
nơgnpgpngpnpgnpgpngpnmgknfbbngmnlkgnlmgngnlmbklfgbpfoigfg[e[gr
bố mày đéo bt
Cho đa thức \(f\left(x\right)\)bậc 3 với hệ số \(x^3\)là số nguyên dương thỏa mãn:
\(f\left(2019\right)=2020;f\left(2020\right)=2021\)
CMR \(f\left(2021\right)-f\left(2018\right)\)là hợp số
Ta có a^2018 + b^2018 +c^2108 = a^1009b^1009 + b^1009c^1009 +c^1009a^1009
=> a^2018 + b^2018 +c^2018 -a^1009b^1009 -b^1009c^1009 -c^1009a^1009 =0
=> 2( a^2018 +b^2108 +c^2018 -a^1009b^1009 -b^1009c^1009 -c^1009a^1009) =0
=> [(a^1009)^2 -2a^1009b^1009 +(b^1009)^2] + [(b^1009)^2 -2b^1009c^1009 +(c^1009)^2] +[(c^1009)^2 -2c^1009a^1009 +(c^1009)^2] =0
=> (a^1009 -b^1009)^2 + (b^1009 -c^1009)^2 + (c^1009 -a^1009)^2 =0
Vì (a^1009 -b^1009)^2 , (b^1009-c^1009)^2 , (c^1009- a^1009)^2 >_0 ( với mọi a,b,c)
=> a^1009 -b^1009 =0 , b^1009-c^1009 =0 , c^1009-a^1009 =0
=> a=b=c=0
Thay vào A : A=0
Vậy A=0
777-44=