Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Ta có: A= 2004/2005=1- 1/2005 B=2005/2006=1- 1/2006 1/2005>1/2006 =>1- 1/2005 < 1- 1/2006
Vậy A<B.
2)Tương tự như trên,1001/1002<1002/1003
\(A=\frac{1001^{1001}}{1002^{1002}}=\frac{1001^{1000}.1001}{1002^{1001}.1002}\)
\(B=\frac{1001^{1001}+101101}{1002^{1002}+101202}=\frac{1001.1001^{1000}+1001.101}{1002.1002^{1001}+1002.101}\)
\(=\frac{1001\left(1001^{1000}+101\right)}{1002\left(1002^{1001}+101\right)}\)
Xét \(\frac{1001^{1000}+101}{1002^{1001}+101}\)\(-\frac{1001^{1000}}{1002^{1001}}\)
\(=\frac{1002^{1001}\left(1001^{1000}+101\right)-1001^{1000}\left(1002^{1001}+101\right)}{\left(1002^{1001}+101\right).1002^{1001}}\)
\(=\frac{1002^{1001}.1001^{1000}+1002^{1001}.101-1001^{1000}.1002^{1001}-1001^{1000}.101}{\left(1002^{1001}+101\right).1002^{1001}}\)
\(=\frac{101\left(1002^{1001}-1001^{1000}\right)}{\left(1002^{1001}+101\right).1002^{1001}}>0\)
=> \(\frac{1001^{1000}+101}{1002^{1001}+101}\)\(>\frac{1001^{1000}}{1002^{1001}}\)
=> \(\frac{1001\left(1001^{1000}+101\right)}{1002\left(1002^{1001}+101\right)}>\frac{1001^{1000}.1001}{1002^{1001}.1002}\)
=> \(B>A\)
1.
Ta có:
* 279
= ( 3.9)9
= 39.99
= 3.38.99
=3.(32)4.99
= 3.94.99
= 3.913
* 817
= (92)7
= 914
M = 817 - 279 - 913
= 914 + 3.913 – 913
=913(9 – 3 – 1)
= 5.912 chia hết cho 5 và 9 => chia hết cho45
Vậy M chia hết cho 45.
\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\)
\(2005A=\frac{2005^{2006}+2005}{2005^{2006}+1}=\frac{2005^{2006}+1+2004}{2005^{2006}+1}=\frac{2005^{2006}+1}{2005^{2006}+1}+\frac{2004}{2005^{2006}+1}\)
\(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)
\(2005B=\frac{2005^{2005}+2005}{2005^{2005}+1}=\frac{2005^{2005}+1+2004}{2005^{2005}+1}=\frac{2005^{2005}+1}{2005^{2005}+1}+\frac{2004}{2005^{2005}+1}\)
Vì \(\frac{2004}{2005^{2006}+1}<\frac{2004}{2005^{2005}+1}\)
Nên A<B
\(\Leftrightarrow10A=\frac{10\left(10^{2004}+1\right)}{10^{2005}+1}\)
\(\Rightarrow10A=\frac{10^{2005}+10}{10^{2005}+1}\)
\(10A=\frac{10^{2005}+1+9}{10^{2005}+1}=\frac{10^{2005}+1}{10^{2005}+1}+\frac{9}{10^{2005}+1}\)
\(10A=1+\frac{9}{10^{2005}+1}\)
tương tự như trên ta có :
\(10B=1+\frac{9}{10^{2006}+1}\)
ta thấy:102005+1<102006+1
\(\Rightarrow\frac{9}{10^{2005}+1}>\frac{9}{10^{2006}+1}\)
\(\Rightarrow1+\frac{9}{10^{2005}+1}>1+\frac{9}{10^{2006}+1}\)
=>10A>10B
=>A>B
kl: vậy A>B
Ta có: A=\(\dfrac{2004}{2005}\) = \(1-\dfrac{1}{2005}\)
B= \(\dfrac{2005}{2006}=1-\dfrac{1}{2006}\)
=> \(1-\dfrac{1}{2005}>1-\dfrac{1}{2006}\)
=> \(\dfrac{2004}{2005}\) > \(\dfrac{2005}{2006}\) => A > B
Phần sau tương tự
nếu đúng thì bn tick hộ mk nha
cảm ơn bn nhìu
CHÚC BN HỌC TỐT