K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 9 2018

Ta có: A=\(\dfrac{2004}{2005}\) = \(1-\dfrac{1}{2005}\)

B= \(\dfrac{2005}{2006}=1-\dfrac{1}{2006}\)

=> \(1-\dfrac{1}{2005}>1-\dfrac{1}{2006}\)

=> \(\dfrac{2004}{2005}\) > \(\dfrac{2005}{2006}\) => A > B

Phần sau tương tự

17 tháng 9 2018

nếu đúng thì bn tick hộ mk nhaleuleu

cảm ơn bn nhìuhehe

CHÚC BN HỌC TỐT

3 tháng 8 2018

1)Ta có: A= 2004/2005=1- 1/2005          B=2005/2006=1- 1/2006        1/2005>1/2006  =>1- 1/2005 < 1- 1/2006

Vậy A<B.

2)Tương tự như trên,1001/1002<1002/1003

29 tháng 3 2018

A>B chúc bạn học tốt

29 tháng 12 2022

a)A = B

b)A>B

29 tháng 12 2022

bạn ơi , phải giải thích chứ sao mà hiểu được

14 tháng 10 2019

\(A=\frac{1001^{1001}}{1002^{1002}}=\frac{1001^{1000}.1001}{1002^{1001}.1002}\)

\(B=\frac{1001^{1001}+101101}{1002^{1002}+101202}=\frac{1001.1001^{1000}+1001.101}{1002.1002^{1001}+1002.101}\)

\(=\frac{1001\left(1001^{1000}+101\right)}{1002\left(1002^{1001}+101\right)}\)

Xét \(\frac{1001^{1000}+101}{1002^{1001}+101}\)\(-\frac{1001^{1000}}{1002^{1001}}\)

\(=\frac{1002^{1001}\left(1001^{1000}+101\right)-1001^{1000}\left(1002^{1001}+101\right)}{\left(1002^{1001}+101\right).1002^{1001}}\)

\(=\frac{1002^{1001}.1001^{1000}+1002^{1001}.101-1001^{1000}.1002^{1001}-1001^{1000}.101}{\left(1002^{1001}+101\right).1002^{1001}}\)

\(=\frac{101\left(1002^{1001}-1001^{1000}\right)}{\left(1002^{1001}+101\right).1002^{1001}}>0\)

=> \(\frac{1001^{1000}+101}{1002^{1001}+101}\)\(>\frac{1001^{1000}}{1002^{1001}}\)

=> \(\frac{1001\left(1001^{1000}+101\right)}{1002\left(1002^{1001}+101\right)}>\frac{1001^{1000}.1001}{1002^{1001}.1002}\)

=> \(B>A\)

15 tháng 10 2019

Mình cảm ơn ạ! Hi vọng sau này ban sẽ giúp mình nữa nha ^^ 

13 tháng 5 2015

1.       

Ta có:

* 279

= ( 3.9)9

= 39.99

= 3.38.99

=3.(32)4.99

= 3.94.99

= 3.913

* 817

= (92)7

= 914

M = 81 - 279 - 913

= 914 + 3.913 – 913

=913(9 – 3 – 1)

= 5.912 chia hết cho 5 và 9 => chia hết cho45

Vậy M chia hết cho 45.

22 tháng 7 2015

\(A=\frac{2005^{2005}+1}{2005^{2006}+1}\)

\(2005A=\frac{2005^{2006}+2005}{2005^{2006}+1}=\frac{2005^{2006}+1+2004}{2005^{2006}+1}=\frac{2005^{2006}+1}{2005^{2006}+1}+\frac{2004}{2005^{2006}+1}\)

\(B=\frac{2005^{2004}+1}{2005^{2005}+1}\)

\(2005B=\frac{2005^{2005}+2005}{2005^{2005}+1}=\frac{2005^{2005}+1+2004}{2005^{2005}+1}=\frac{2005^{2005}+1}{2005^{2005}+1}+\frac{2004}{2005^{2005}+1}\)

Vì \(\frac{2004}{2005^{2006}+1}<\frac{2004}{2005^{2005}+1}\)

Nên A<B

2 tháng 9 2016

A bé hơn B

22 tháng 3 2016

đề có vẻ sai ở mẫu số của ps thứ nhất

22 tháng 3 2016

\(\Leftrightarrow10A=\frac{10\left(10^{2004}+1\right)}{10^{2005}+1}\)

\(\Rightarrow10A=\frac{10^{2005}+10}{10^{2005}+1}\)

\(10A=\frac{10^{2005}+1+9}{10^{2005}+1}=\frac{10^{2005}+1}{10^{2005}+1}+\frac{9}{10^{2005}+1}\)

\(10A=1+\frac{9}{10^{2005}+1}\)

tương tự như trên ta có :

\(10B=1+\frac{9}{10^{2006}+1}\)

ta thấy:102005+1<102006+1

\(\Rightarrow\frac{9}{10^{2005}+1}>\frac{9}{10^{2006}+1}\)

\(\Rightarrow1+\frac{9}{10^{2005}+1}>1+\frac{9}{10^{2006}+1}\)

=>10A>10B

=>A>B

kl: vậy A>B