K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2016

kieu nay la ko tinh ra ket qua hay so sanh

A=1+C; voi C=5^9/(1+...5^8)=1/(1/5^9+1/5^8+...+1/5)

B=1+D;voi D=3^9/(1+..3^8)=1/(1/3^9+1/3^8+...+1/3)

C=1/E; voi E=(1/5^9+1/5^8+...+1/5)

D=1/f; voi F=(1/3^9+1/3^8+...+1/3)

=> F-E=(1/3-1/5)+...+(1/3^9-1/5^9) >0=> F>E

=> C>D=> A>B

27 tháng 3 2016

a=5^9

b=3^9

=>a>b

18 tháng 4 2020

Ta có: \(5\left(1+5+5^2+...+5^9\right)-\left(1+5+5^2+...+5^9\right)\)

\(\left(5+5^2+5^3+...+5^{10}\right)-\left(1+5+5^2+...+5^9\right)\)

\(4\left(1+5+5^2+...+5^9\right)\)\(=5^{10}-1\)

=> \(1+5+5^2+...+5^9=\frac{5^{10}-1}{4}\)

Tương tự: \(1+5+5^2+....+5^8=\frac{5^9-1}{4}\)

=> \(A=\frac{\frac{5^{10}-1}{4}}{\frac{5^9-1}{4}}=\frac{5^{10}-1}{5^9-1}=\frac{5\left(5^9-1\right)+4}{5^9-1}=5+\frac{4}{5^9-1}>5\)

Tương tự:

\(1+3+3^2+...+3^9=\frac{3^{10}-1}{2}\)

và \(1+3+3^2+...+3^8=\frac{3^9-1}{2}\)

=>\(B=\frac{3^{10}-1}{3^9-1}=\frac{3\left(3^9-1\right)+2}{3^9-1}=3+\frac{2}{3^9-1}< 5\)

=> A >  5 > B

18 tháng 4 2020

A= \(\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^8}\)

  = \(\frac{1}{1+5+5^2+...+5^8}+\frac{5\left(1+5+5^2+...+5^8\right)}{1+5+5^2+...+5^8}\)

mà \(\frac{1}{1+5+5^2+...+5^8}\approx0\)

suy ra: A= 5.

chứng minh tương tự, ta có: B=3

5 > 3 --> A>B

7 tháng 7 2019

a, \(B=\frac{19^{31}+5}{19^{32}+5}< \frac{19^{31}+5+90}{19^{32}+5+90}=\frac{19^{31}+95}{19^{32}+95}=\frac{19\left(19^{30}+5\right)}{19\left(19^{31}+5\right)}=\frac{19^{30}+5}{19^{31}+5}=A\)

b, Ta có: \(\frac{1}{A}=\frac{2^{20}-3}{2^{18}-3}=\frac{2^2.\left(2^{18}-3\right)+9}{2^{18}-3}=4+\frac{9}{2^{18}-3}\)

\(\frac{1}{B}=\frac{2^{22}-3}{2^{20}-3}=\frac{2^2\left(2^{20}-3\right)+9}{2^{20}-3}=4+\frac{9}{2^{20}-3}\)

Vì \(\frac{9}{2^{18}-3}>\frac{9}{2^{20}-3}\)\(\Rightarrow\frac{1}{A}>\frac{1}{B}\Rightarrow A< B\)

c,  Câu hỏi của truong nguyen kim 

16 tháng 7 2016

sao hong ai dê y vay troi

16 tháng 7 2016

mình viết tắt bạn tự hiểu nha:

a=1+(59/1+5+525+...+58

b=1+(39/1+3+33+....+38

VD:A/B-C/D=A.C/B.D-C.B/D.B

TƯƠNG TỰ NHƯ A,B BẠN TÍNH RA

6 tháng 1 2016

\(\frac{1}{5}A=\frac{1+5+5^2+...+5^9}{1+5+5^2+...+5^9}=1\)
\(\frac{1}{3}B=\frac{1+3+3^2+...+3^9}{1+3+3^2+...+3^9}=1\)
Vì  \(\frac{1}{5}<\frac{1}{3}\)Nên \(\frac{1}{5}A<\frac{1}{5}B\)
Vậy A<B

6 tháng 1 2016

ai trả lời cũng sai hết rồi 

Tui Gợi ý là A > B

Bây giờ các bạn ghi cách giải đi