Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tham khảo nhé
Ta có công thức :
\(\frac{a}{b}< \frac{a+c}{b+c}\) \(\left(\frac{a}{b}< 1;a,b,c\inℕ^∗\right)\)
Áp dụng vào ta có :
\(B=\frac{2004^{2004}+1}{2004^{2005}+1}< \frac{2004^{2004}+1+2003}{2004^{2005}+1+2003}=\frac{2004^{2004}+2004}{2004^{2005}+2004}=\frac{2004\left(2004^{2003}+1\right)}{2004\left(2004^{2004}+1\right)}=\frac{2004^{2003}+1}{2004^{2004}+1}\)
Lại có :
\(A=\frac{2004^{2003}+1}{2004^{2004}+1}\)
\(\Rightarrow\)\(B< A\) hay \(A>B\)
Vậy \(A>B\)
Câu hỏi của linh phạm - Toán lớp 6 - Học toán với OnlineMath
Có : 2004A = 2004^2004+2004/2004^2004+1 = 1 + 2003/2004^2004+1
2004B = 2004^2005+2004/2004^2005+1 = 1 + 2003/2004^2005+1 < 1 + 2003/2004^2004+1 = 2014A
=> A > B
Tk mk nha
a, Ta có: \(\frac{2012.2013}{2012.2013+1}< 1< \frac{2013}{2012}\)
\(\Rightarrow\frac{2012.2013}{2012.2013+1}< \frac{2013}{2012}\)
b, \(A=\frac{2003.2004-1}{2003.2004}=1-\frac{1}{2003.2004}\)
\(B=\frac{2004.2005-1}{2004.2005}=1-\frac{1}{2004.2005}\)
Ta có: \(2003.2004< 2004.2005\)
\(\Rightarrow\frac{1}{2003.2004}>\frac{1}{2004.2005}\)
\(\Rightarrow1-\frac{1}{2003.2004}< 1-\frac{1}{2004.2005}\)
\(\Rightarrow A< B\)
a.\(\frac{13}{15}< \frac{23}{25}\)
a.\(\frac{25}{18}>\frac{24}{27}\)
c.\(\frac{25}{78}< \frac{24}{27}\)
d.\(\frac{13}{15}< \frac{133}{153}\)
e.\(\frac{2003}{2004}+\frac{2004}{2005}< 2003+\frac{2004}{2004}+2003\)
1.\(a,\)Ta có: \(1-\frac{13}{15}=\frac{2}{15};1-\frac{23}{25}=\frac{2}{25}\)
Mà \(\frac{2}{15}>\frac{2}{25}\)
Vì nếu cùng số bị trừ, số trừ càng lớn thì thương cang nhỏ và ngược lại. Do cùng bị 1 trừ nên \(\frac{13}{15}< \frac{23}{25}\)
\(b,\)Ta có: \(\frac{24}{27}=\frac{8}{9}=\frac{16}{18}\)
Mà \(\frac{25}{18}>\frac{16}{18}\)
Nên \(\frac{25}{18}>\frac{24}{27}\)
\(c,\)Ta có: \(\frac{24}{27}=\frac{8}{9}\)
Và \(\frac{25}{78}=\frac{25.9}{78.9};\frac{8}{9}=\frac{8.78}{9.78}\)
Mà \(25.9=25\left(8+1\right)=25.8+25< 8.78\)
Nên \(\frac{25}{78}< \frac{8}{9}=\frac{24}{27}\)
\(d,\)Ta có: \(1-\frac{13}{15}=\frac{2}{15}=\frac{20}{150}\)
\(1-\frac{133}{153}=\frac{20}{153}>\frac{20}{150}=\frac{2}{15}\)
Vì nếu cùng số bị trừ, số trừ càng lớn thì thương cang nhỏ và ngược lại. Do cùng bị 1 trừ nên \(\frac{133}{153}< \frac{13}{15}\)
2. Ta có: \(\frac{2003+2004}{2004+2003}=\frac{2007}{2007}=1\)
Còn tiếp nữa thì bạn tự giải nha! chỉ cần so sánh 2003/2004+2004/2005 với 1 thôi!
A > B nhé
A = 20042005 / 20042005 - 2004 + 1 / 20042005 - 2004
B = 20042005 / 20042005 +2004
Ta có B < 20042005 / 20042005 - 2004 ( tử bằng nhau, mẫu B lớn hơn) >> A > B ( ng` ta thêm 1 vào hack não hs thôi )
Tuy mk chỉ học lớp 5 nhưng mk cũng sẽ thử đoán nha !
Chắc là A = B
nếu đúng thì tk cho mk nha !
\(A=\frac{2003\cdot2004-1}{2003\cdot2004}=1-\frac{1}{2003\cdot2004}\)
\(B=\frac{2004\cdot2005-1}{2004\cdot2005}=1-\frac{1}{2004\cdot2005}\)
Vì 1 = 1 và \(\frac{1}{2003\cdot2004}>\frac{1}{2004\cdot2005}\) nên A > B
Vậy A > B
Chắc sai =))
\(A=\frac{2003\cdot2004-1}{2003\cdot2004}=\frac{2003\cdot2004}{2003\cdot2004}-\frac{1}{2003\cdot2004}=1-\frac{1}{2003\cdot2004}\)
\(B=\frac{2004\cdot2005-1}{2004\cdot2005}=\frac{2004\cdot2005}{2004\cdot2005}-\frac{1}{2004\cdot2005}=1-\frac{1}{2004\cdot2005}\)
có : \(\frac{1}{2003\cdot2004}>\frac{1}{2004\cdot2005}\)
\(\Rightarrow1-\frac{1}{2003\cdot2004}< 1-\frac{1}{2004\cdot2005}\)
\(\Rightarrow A< B\)