K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 1 2016

a) Ta thấy Phần hơn của A là 13/10^7-8

Phần hơn của B là 13/10^8-7=13/10^7.10-7

Nhìn vào ta thấy 13/10^7-8>13/10^7.10-7

=> A>B

7 tháng 3 2017

Ta viết lại A như sau:

\(A=\frac{10^{1992}+1}{10^{1991}+1}\)

\(=\frac{10^{1991}X10+1}{10^{1991}+1}\)

\(=\frac{10+1}{1}\)

\(=\frac{11}{1}\)

\(=11\)

19 tháng 2 2018

a>b do

5 tháng 5 2015

A=10^1990+1/10^1991

A=10.(10^1990+1 / 10^1991+1)

10A=10^1991+10 / 10^1991+1

10A=10^1991+1 / 10^1991+1 +9/10^1991+1

10A=1 + 9/10^1991

B=10^1991+1 / 10^1992+1

B=10.(10^1991+1 / 10^1992+1)

10B=10^1992+10 / 10^1992+1

10B=10^1992+1 / 10^1992+1 + 9/10^1992+1

10B= 1+9/10^1992+1

Ta có    9/10^1991 > 9/10^1992

                 10A     >     10B

                     A    >       B

 

5 tháng 5 2015

Vì \(\frac{10^{1994}+1}{10^{1992}+1}\)<1

=> \(\frac{10^{1994}+1}{10^{1992}+1}\)<\(\frac{10^{1994}+1+9}{10^{1992}+1+9}\)

Ta có \(\frac{10^{1994}+1+9}{10^{1992}+1+9}\)=\(\frac{10\left(10^{1990}+1\right)}{10\left(10^{1991}+1\right)}\)=\(\frac{10^{1990}+1}{10^{1991}+2}\)

=>\(\frac{10^{1994}+1}{10^{1992}+1}\)<\(\frac{10^{1990}+1}{10^{1991}+2}\)

Vậy B < A