K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 10 2016

Giả sử \(8>\sqrt{15}+\sqrt{17}\)

\(\Leftrightarrow64>32+2\sqrt{15×17}\)

\(\Leftrightarrow16>\sqrt{\left(16-1\right)\left(16+1\right)}=\sqrt{16^2-1}\left(dung\right)\)

Vậy \(8>\sqrt{15}+\sqrt{17}\)

8 tháng 10 2018

dsadasdsadsadsasddấdasdasdadấdadsdsđasdasđdsaádasdasdádaddadadaddadadaddâdadaad

11 tháng 7 2021

căn 15 < căn 16=4

căn 8 < căn 9 bằng 3 

mà 4=3=7 suy ra 7>căn 15 cộng căn 8

30 tháng 12 2016

Đầu tiên ta bình phương tất cả:

\(\sqrt{3^2}=3\)

\(5^2=25\)

\(\sqrt{8^2}=8\)

Sau khi bình phương ta có:

   3 ... 25 - 8

   3 < 17

=> \(\sqrt{3}< 5-\sqrt{8}\)

\(\left(\sqrt{26}+3\right)^2=35+6\sqrt{26}\)

\(\left(\sqrt{63}\right)^2=63=35+28\)

mà \(6\sqrt{26}>28\)

nên \(\sqrt{26}+3>\sqrt{63}\)

8 tháng 10 2018

hfhfdh

2 tháng 8 2019

Giả sử \(8< \sqrt{15}+\sqrt{17}\)

\(\Leftrightarrow64< 15+2\sqrt{15.17}+17\)(Bình phương hai vế)

\(\Leftrightarrow32< 2\sqrt{15.17}\)

\(\Leftrightarrow16< \sqrt{15.17}\)

\(\Leftrightarrow16< \sqrt{\left(16-1\right)\left(16+1\right)}\)

\(\Leftrightarrow\sqrt{16^2}< \sqrt{16^2-1}\)

\(\Leftrightarrow16^2< 16^2-1\)(vô lí)

Chứng minh tương tự điều giả sử \(8=\sqrt{15}+\sqrt{17}\)

Vậy \(8>\sqrt{15}+\sqrt{17}\)

https://olm.vn/hoi-dap/detail/61596070678.html

bn coppy link này nhé, có bài mak bn đang cần đấy

4 tháng 7 2021

\(8^2=64=32+2\sqrt{16^2}\)

\(\left(\sqrt{15}+\sqrt{17}\right)^2=32+2\sqrt{15.17}=32+2\sqrt{\left(16-1\right)\left(16+1\right)}\)

\(=32+2\sqrt{16^2-1}\)

\(< =>8^2>\left(\sqrt{15}+\sqrt{17}\right)^2\)

\(8>\sqrt{15}+\sqrt{17}\)

\(\left(\sqrt{2019}+\sqrt{2021}\right)^2=4040+2\sqrt{2019.2021}\)

\(=4040+2\sqrt{\left(2020-1\right)\left(2020+1\right)}=4040+2\sqrt{2020^2-1}\)

\(\left(2\sqrt{2020}\right)^2=8080=4040+2\sqrt{2020^2}\)

\(< =>\sqrt{2019}+\sqrt{2021}< 2\sqrt{2020}\)

mik chọn điền

mik lười chép ại đề bài 

10 tháng 6 2016

a)1 và \(\sqrt{3}-1\)

Ta có:

\(\sqrt{3}-1< \sqrt{4}-1=2-1=1\)

Vậy 1 > \(\sqrt{3}-1\)

b) \(2\sqrt{31}\) và 10
Ta có:
\(10=2.5=2.\sqrt{25}< 2.\sqrt{31}\)
Vậy \(2\sqrt{31}>10\)
c) \(-3\sqrt{11}\) và -12
Ta có:
\(-12=-3.4=-3.\sqrt{16}< -3.\sqrt{11}\)
Vậy \(-3\sqrt{11}>-12\)
 
4 tháng 7 2016

a) ta có \(\sqrt{3-1}\)=\(\sqrt{2}\)

vì 1<2=>\(\sqrt{1}\)<\(\sqrt{2}\)

b)ta có 10=\(\sqrt{100}\)và \(2\sqrt{31}\)=\(\sqrt{124}\)

vì 100<124=>\(\sqrt{100}\)<\(\sqrt{124}\)hay \(2\sqrt{31}\)>10

c)ta có -12=\(-3\sqrt{16}\)

vì 11<16=>\(\sqrt{11}\)<\(\sqrt{16}\)=>\(-3\sqrt{11}\)>\(-3\sqrt{16}\) (vì nhân với số âm)hay\(-3\sqrt{11}\)>-12