Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy : \(\frac{1}{11}>\frac{1}{100},\frac{1}{12}>\frac{1}{100},...,\frac{1}{100}=\frac{1}{100}\)
\(\Rightarrow\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{1}{100}+\frac{1}{100}+\frac{1}{100}+...+\frac{1}{100}=\frac{90}{100}=\frac{9}{10}\)
\(\Rightarrow\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>\frac{9}{10}+\frac{1}{10}=1\)
Do đó : \(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}+\frac{1}{13}+...+\frac{1}{100}>1\)
Ta có :
\(\frac{1}{101}>\frac{1}{200}\)
\(\frac{1}{102}>\frac{1}{200}\)
\(\frac{1}{103}>\frac{1}{200}\)
\(.........\)
\(\frac{1}{200}=\frac{1}{200}\)
Cộng vế với vế ta được :
\(\frac{1}{101}+\frac{1}{102}+.....+\frac{1}{200}>\frac{1}{200}+\frac{1}{200}+....+\frac{1}{200}\) (có 100 số hạng \(\frac{1}{200}\))\(=\frac{100}{200}=\frac{1}{2}\)
\(\Rightarrow\frac{1}{101}+\frac{1}{102}+\frac{1}{103}+.....+\frac{1}{200}>\frac{1}{2}\)
Gọi số tự nhiên có 3 chữ số cần tìm là a ( a thuộc N sao)
theo bài ra ta có : a=8k+7
a=31q+28 (k,q thuộc N )
suy ra a-7=8k suy ra a-7 chi hết cho 8 suy ra a-7+72 chia hết cho 8 suy ra a+65 chia hết cho8
a-28=31k a-28 chia hết cho 31 a-28+93 chia hết cho 31 a+65 chia hết cho 31
suy ra a+65 thuộc BC(8;31)
để a có 3 chư số thì a+65 là BCNN ( 31,8)=248
vậy STN cố 3 chữ số cần tỉm là 248
mk ko hiểu cho lắm bạn giải thích đi nhưng nhắn tin cho mk nhé rồi mk trả lời cho
Gọi số có 2 chữ số đó là ab(có gạch ngang trên đầu)
khi thêm số 0 vào giữa thì số đó trở thành: a0b
Theo bài ra: a0b=7ab
<=>100a+b=70a+7b
<=>30a=6b
Ta có khi a=2 =>b=10 không thỏa mãn vì b là 1 số có 1 chữ số
khi a>2 =>càng không thỏa mãn
Xét a=1=>b=5 thỏa mãn điều kiện của bài vậy số ab là 15