Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) 5^299 < 5^300 = (5^2)^150 = 25^150
3^501 = (3^3)^167 = 27^167
=> 27^167 > 25^150 => 3^501 > 5^299
Còn phần b) ko bít làm
2^99<2^100=(2^4)^25=16^25<17^25
5^299<5^300=(5^3)^100=125^100
3^501>3^500=(3^5)^100=243^100
=>125^100<243^100
=>5^299<3^501
Để so sánh hai phân số -5/91 và -501/9191, ta cần tìm một cách chung để so sánh chúng. Một cách là tìm mẫu số chung cho cả hai phân số.
Để làm điều này, ta nhân mẫu số của phân số thứ nhất (91) với mẫu số của phân số thứ hai (9191) và đảo ngược lại. Khi làm như vậy, ta có:
-5/91 = (-5 * 9191) / (91 * 9191) = -45955/836381
-501/9191 = (-501 * 91) / (9191 * 91) = -45591/836381
Vì cả hai phân số có cùng mẫu số (-45955/836381 và -45591/836381), ta có thể so sánh chúng một cách dễ dàng. Trong trường hợp này, phân số -5/91 nhỏ hơn phân số -501/9191.
Lời giải:
$2^{299}< 2^{300}=(2^3)^{100}=8^{100}$
$3^{201}> 3^{200}=(3^2)^{100}=9^{100}$
$\Rightarrow 3^{201}> 9^{100}> 8^{100}> 2^{299}$
a: -91/104=-7/8=-21/24
-5/6=-20/24
=>-91/104<-5/6
b: -15/21=-5/7
-36/44=-9/11
5/7=1-2/7; 9/11=1-2/11
mà 2/7>2/11
nên 5/7<9/11
=>-15/21>-36/44
a: \(\dfrac{-13}{40}< \dfrac{-12}{40}\)
\(\dfrac{-5}{6}>\dfrac{-91}{104}\)
5299 và 3501
5299<5300; 3501>3500
5300=(53)100=125100
3500=(35)100=243100
Vì 243100>125100 nên 3501>5299