Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2^{10}=1024< 1029=3.7^3\)
\(\Leftrightarrow\left(2^{10}\right)^{238}< \left(3.7^3\right)^{238}\)
\(\Leftrightarrow2^{2380}< 3^{238}.7^{714}\) \(\left(1\right)\)
\(3^5=243< 256=2^8\) \(\left(2\right)\)
\(3^3=27< 32=2^5\) \(\left(3\right)\)
Từ \(\left(2\right)\), \(\left(3\right)\) ta có:
\(3^{328}=3^3.3^{325}=3^3\left(3^5\right)^{47}< 2^5\left(2^8\right)^{47}=2^{381}\)\(\left(4\right)\)
Từ \(\left(1\right)\), \(\left(4\right)\) ta có:
\(2^{2380}< 3^{238}.7^{714}\)
\(\Leftrightarrow2^{2380}< 2^{381}.7^{714}\)
\(\Leftrightarrow2^{1999}< 7^{714}\)
\(\Leftrightarrow2^{1993}< 7^{714}\).
ta có: \(A=\frac{1999^{1999}+1}{1999^{1998}+1}=\frac{1999.\left(1999^{1998}+1\right)-1998}{1999^{1998}+1}=\frac{1999.\left(1999^{1998}+1\right)}{1999^{1998}+1}-\frac{1998}{1999^{1998}+1}\)
\(=1999-\frac{1998}{1999^{1998}+1}\)
\(B=\frac{1999^{2000}+1}{1999^{1999}+1}=\frac{1999.\left(1999^{1999}+1\right)-1998}{1999^{1999}+1}=\frac{1999.\left(1999^{1999}+1\right)}{1999^{1999}+1}-\frac{1998}{1999^{1999}+1}\)
\(=1999-\frac{1998}{1999^{1999}+1}\)
mà \(\frac{1998}{1999^{1998}+1}>\frac{1998}{1999^{1999}+1}\Rightarrow1999-\frac{1998}{1999^{1998}+1}< 1999-\frac{1998}{1999^{1999}+1}\)
\(\Rightarrow A< B\)
\(\frac{1999^{1999+1}}{1999^{2000+1}}=1-\frac{1}{1999^{2000+1}};\)\(\frac{1999^{1998+1}}{1999^{1999+1}}=1-\frac{1}{1999^{1999+1}}\)
Vì \(1-\frac{1}{1999^{2000+1}}< 1-\frac{1}{1999^{1999+1}}\)nên \(\frac{1999^{1999+1}}{1999^{2000+1}}>\frac{1999^{1998+1}}{1999^{1999+1}}\)