K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 9 2021

\(\left(2\sqrt{2}+\sqrt{3}\right)^2=11+4\sqrt{6};9^2=81=11+70\\ \left(4\sqrt{6}\right)^2=96< 70^2=4900\\ \Leftrightarrow11+4\sqrt{6}< 11+70\\ \Leftrightarrow2\sqrt{2}+\sqrt{3}< 9\)

26 tháng 8 2016

a) \(9=6+3=6+\sqrt{9}\)

\(6+2\sqrt{2}=6+\sqrt{8}\)

\(\sqrt{8}< \sqrt{9}\) nên \(6+\sqrt{8}=6+2\sqrt{2}< 6+\sqrt{9}=9\)

b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=5+2\sqrt{6}=5+\sqrt{24}\)

\(3^2=9=5+4=5+\sqrt{16}\)

\(\sqrt{16}< \sqrt{24}\Rightarrow3^2< \left(\sqrt{2}+\sqrt{3}\right)^2\Rightarrow3< \sqrt{2}+\sqrt{3}\)

c) \(9+4\sqrt{5}=\left(2+\sqrt{5}\right)^2\)

\(16=\left(2+2\right)^2=\left(2+\sqrt{4}\right)^2\)

\(\sqrt{4}< \sqrt{5}\Rightarrow2+\sqrt{4}< 2+\sqrt{5}\Rightarrow\left(2+\sqrt{4}\right)^2=16< \left(2+\sqrt{5}\right)^2=9+4\sqrt{5}\)

d) \(\left(\sqrt{11}-\sqrt{3}\right)^2=14-2\sqrt{33}=14-\sqrt{132}\)

\(2^2=14-10=14-\sqrt{100}\)

\(\sqrt{100}< \sqrt{132}\Leftrightarrow-\sqrt{100}>-\sqrt{132}\Leftrightarrow14-\sqrt{100}>14-\sqrt{132}\)

\(\Rightarrow2>\sqrt{11}-\sqrt{3}\)

 

21 tháng 8 2017

(14,78-a)/(2,87+a)=4/1

14,78+2,87=17,65

Tổng số phần bằng nhau là 4+1=5

Mỗi phần có giá trị bằng 17,65/5=3,53

=>2,87+a=3,53

=>a=0,66.

24 tháng 6 2018

Ta có : \(a)\)\(6+2\sqrt{2}\) và 9

\(\Rightarrow9-6-2\sqrt{2}=3-2\sqrt{2}\)

                                    \(=2-2\sqrt{2}+1\)

                                       \(=(\sqrt{2}-1)^2>0\)

\(\Rightarrow9-6-2\sqrt{2}>0\Rightarrow9>6+2\sqrt{2}\)

\(b)\sqrt{2}+\sqrt{3}\)và 3

\(\Rightarrow\sqrt{[(\sqrt{2}+\sqrt{3})}^2]\)

\(=\sqrt{(5+2\sqrt{6}})\)

\(=\sqrt{(5+\sqrt{24}})=3=\sqrt{9}=\sqrt{(5+\sqrt{16})}\)

\(=\sqrt{(5+24)}>\sqrt{(5+16)}\Rightarrow\sqrt{2+\sqrt{3}}>3\)

\(c)\sqrt{11}-\sqrt{3}\)và 2

\(=\sqrt{11}-\sqrt{3}=\sqrt{[(\sqrt{11}-\sqrt{3}})^2=\sqrt{(14-2\sqrt{33})}\)\(2=\sqrt{4}=\sqrt{(14-10)}=\sqrt{(14-2\sqrt{25})}\Rightarrow\sqrt{(14-2\sqrt{33})}< \sqrt{(14-2\sqrt{25})}\)

\(\Rightarrow\sqrt{11}-\sqrt{3}< 2\)

Chúc bạn học tốt~

24 tháng 6 2018

a) \(6+2\sqrt{2}=6+\sqrt{2^2.2}=6+\sqrt{8}\)

\(9=6+3=6+\sqrt{9}\)

Ta có: \(\sqrt{9}>\sqrt{8}\)

\(\Rightarrow6+\sqrt{3}>6+\sqrt{8}\)

\(\Rightarrow9>6+2\sqrt{2}\)

b) \(\left(\sqrt{2}+\sqrt{3}\right)^2=2+2.\sqrt{2}.\sqrt{3}+3=5+2.\sqrt{6}=5+\sqrt{2^2.6}=5+\sqrt{24}\)

\(3^2=9=5+4=5+\sqrt{16}\)

Ta có: \(\sqrt{24}>\sqrt{16}\)

\(\Rightarrow5+\sqrt{24}>5+\sqrt{16}\)

\(\Rightarrow\left(\sqrt{2}+\sqrt{3}\right)^2>3^2\)

\(\Rightarrow\sqrt{2}+\sqrt{3}>3\)

c) làm tương tự như câu c

mk ms học lớp 7 nên có gì sai sót thì bỏ qua nha

16 tháng 4 2021

a)  Ta có:

4>3⇔√4>√3⇔2>√3⇔2.2>2.√3⇔4>2√34>3⇔4>3⇔2>3⇔2.2>2.3⇔4>23

Cách khác:

Ta có:  

⎧⎨⎩42=16(2√3)2=22.(√3)2=4.3=12{42=16(23)2=22.(3)2=4.3=12

Vì 16>12⇔√16>√1216>12⇔16>12

Hay 4>2√34>23.

b) Vì 5>4⇔√5>√45>4⇔5>4

⇔√5>2⇔5>2   

⇔−√5<−2⇔−5<−2 (Nhân cả hai vế bất phương trình trên với −1−1)

Vậy −√5<−2−5<−2.


 

17 tháng 4 2021

a, Ta có : \(4=\sqrt{16}\)\(2\sqrt{3}=\sqrt{4.3}=\sqrt{12}\)

Do 12 < 16 hay \(2\sqrt{3}< 4\)

b, Ta có : \(-2=-\sqrt{4}\)

Do \(4< 5\Rightarrow\sqrt{4}< \sqrt{5}\Rightarrow-\sqrt{4}>-\sqrt{5}\)

Vậy \(-2>-\sqrt{5}\)

15 tháng 8 2023

1) ĐKXĐ của phân thức là : \(\left\{{}\begin{matrix}\sqrt{x}\ge0\\\sqrt{x}-3\ne0\\x-9\ne0\\\sqrt{x}+3\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt{x}\ne3\\\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)\ne0\\\sqrt{x}\ne-3\left(LĐ\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne9\end{matrix}\right.\)

Ta có : \(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}:\left(\dfrac{x+3}{x-9}+\dfrac{1}{\sqrt{x}+3}\right)\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}:\left(\dfrac{x+3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}+\dfrac{\left(\sqrt{x}-3\right)}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\right)\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}:\dfrac{x+3+\sqrt{x}-3}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}:\dfrac{x+\sqrt{x}}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)

\(P=\dfrac{\sqrt{x}}{\sqrt{x}-3}.\dfrac{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}{\sqrt{x}.\left(\sqrt{x}+1\right)}\)

\(P=\dfrac{\sqrt{x}+3}{\sqrt{x}+1}\)

2) Với \(x=4-2\sqrt{3}=3-2\sqrt{3}+1=\left(\sqrt{3}-1\right)^2\)

\(\Rightarrow\sqrt{x}=\sqrt{3}-1\)

Do đó : \(P=\dfrac{\sqrt{3}-1+3}{\sqrt{3}-1+1}\)

\(P=\dfrac{\sqrt{3}+2}{\sqrt{3}}=\dfrac{3+2\sqrt{3}}{3}\)

3) Xét hiệu của : P với 3 

\(\dfrac{\sqrt{x}+3}{\sqrt{x}+1}-3\)

\(=\dfrac{-2\sqrt{x}}{\sqrt{x}+1}\)

Ta thấy : \(\sqrt{x}+1\ge1;-2\sqrt{x}\le0\)

\(\Rightarrow\dfrac{-2\sqrt{x}}{\sqrt{x}+1}\le0\)

\(\Rightarrow P\le3\)

Dấu bằng xảy ra : \(\Leftrightarrow x=0\). Thế lại ta thấy ktm nên P<3

Bài 6: 

a: \(15=\sqrt{225}>\sqrt{200}\)

b: \(27=9\sqrt{9}>9\sqrt{5}\)

c: \(-24=-\sqrt{576}< -\sqrt{540}=-6\sqrt{15}\)

21 tháng 6 2019

Tính :\(a,\)\(-\sqrt{\left(-6\right)^2}=-|-6|=-6\)

\(b,\)\(-\sqrt{\frac{-25}{-16}}=-\sqrt{\left(\frac{5}{4}\right)^2}=-|\frac{5}{4}|=-\frac{5}{4}\)

\(c,\)\(\sqrt{-\frac{-9}{25}}=\sqrt{\frac{9}{25}}=\sqrt{\left(\frac{3}{5}\right)^2}=|\frac{3}{5}|=\frac{3}{5}\)

\(d,\)\(\left(-\sqrt{7}\right)^2=7\)

\(e,\)\(-\left(\frac{\sqrt{3}}{4}\right)^2=-\frac{\sqrt{3}^2}{4^2}=-\frac{3}{16}\)

\(f,\)\(\sqrt{\left(-2\right)^4}=\sqrt{\left[\left(-2\right)^2\right]^2}=|-2^2|=4\)

So sánh :\(a,\) \(\sqrt{8}-1\)

\(2=3-1=\sqrt{9}-1\)

\(\Rightarrow\sqrt{8}-1< 2\)

\(b,\)\(\sqrt{\frac{16}{2}}=\sqrt{8}>\sqrt{3}\)

\(\Rightarrow\sqrt{\frac{16}{2}}>\sqrt{3}\)

25 tháng 6 2023

a/ x <hoac= -23/4

b/ x=2

a/ có 2xcăn6 > 2x2=4

=> 2 căn 6 > 3+1

<=> 2 căn 6 - 3 >1

b/ có 3 căn 2 > 3 

=> 3 căn 2 - 9 > -6 

=> 6 > 9- 3 căn 2