a) A=111995 + 1...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2020

a) Đặt A = \(\frac{5^{12}+1}{5^{13}+1}\Rightarrow5A=\frac{5^{13}+5}{5^{13}+1}=1+\frac{4}{5^{13}+1}\)

Đặt \(B=\frac{5^{11}+1}{5^{12}+1}\Rightarrow5B=\frac{5^{12}+5}{5^{12}+1}=1+\frac{4}{5^{12}+1}\)

Vì \(\frac{4}{5^{13}+1}< \frac{4}{5^{12}+1}\Rightarrow1+\frac{4}{5^{13}+1}< 1+\frac{4}{5^{12}+1}\Rightarrow5A< 5B\Rightarrow A< B\)

20 tháng 8 2020

Áp dụng công thức : \(\frac{a}{b}< 1\Leftrightarrow\frac{a}{b}< \frac{a+m}{b+m}\left(a;b;m\in N\right)\)

Ta có : \(A=\frac{5^{12}+1}{5^{13}+1}< 1\)

\(\Leftrightarrow A=\frac{5^{12}+1}{5^{13}+1}< \frac{5^{12}+1+4}{5^{13}+1+4}=\frac{5^{12}+5}{5^{13}+5}=\frac{5\left(5^{11}+1\right)}{5\left(5^{12}+1\right)}=B\)

\(\Leftrightarrow A< B\)

24 tháng 2 2017

Bài 1:

a) Ta có: 536=(53)12=12512

                 1124=(112)12=12112

Vì 12512>12112

=>536>1124

b) Ta có: 6255=(54)5=520

             1257=(53)7=521

Vì 520<521

=>6255<1257

c) Ta có: 32n=(32)n=9n

                23n=(23)n=8n

Vì 9n>8n

=>32n>23n

d) Ta có: 6.522=(1+5).522=523+522>523 

e) S=1+2+22+23+...+22005

   2S=2+22+23+24+...+22006

=>2S-S=(2+22+23+24+...+22006) - (1+2+22+23+...+22005)

=>S=22006-1<22014<5.22014

Cậu cho tớ 3 tớ sẽ làm 2 bài còn lại cho cậu

24 tháng 2 2017

Nhớ cho tớ 3 "đúng" nhé

4 tháng 10 2016

a) 810 - 89 - 88 = 88(82-8-1) = 88.55 chia hết cho 55

b) 2454.5424.210

= (23.3)54.(33.2)24.210

= (23)54.354.(33)24.224.210

= 2162.354.372.224.210

= 2196.3126

Mà 7263 = (23.32)63=(23)63.(32)63 = 2189.3126

Lại có: 2196.3126 chia hết cho 2189.3126

=> 2454.5424.210 chia hết cho 7263

c) 210 + 211 + 212 = 210(1+2+4) = 210.7 :7 = 210

=> (210 + 211 + 212):7 là 1 số tự nhiên

4 tháng 10 2016

làm 2 bài đầu thôi dc ko 

AH
Akai Haruma
Giáo viên
4 tháng 10 2024

1/

\(10A=\frac{10^{12}-10}{10^{12}-1}=1-\frac{9}{10^{12}-1}<1\)

\(10B=\frac{10^{11}+10}{10^{11}+1}=1+\frac{9}{10^{11}+1}>1\)

$\Rightarrow 10A< 1< 10B$

$\Rightarrow A< B$

AH
Akai Haruma
Giáo viên
4 tháng 10 2024

2/

\(C=\frac{10^{99}+5}{10^{99}-8}=1+\frac{13}{10^{99}-8}\)

\(D=\frac{10^{100}+6}{10^{100}-4}=1+\frac{10}{10^{100}-4}\)

So sánh \(\frac{13}{10^{99}-8}=\frac{130}{10^{100}-80}> \frac{130}{10^{100}-4}> \frac{10}{100^{100}-4}\)

$\Rightarrow 1+\frac{13}{10^{99}-8}> 1+\frac{10}{100^{10}-4}$

$\Rightarrow C> D$

Ta có:

A=1011110121=10101011A=1011−11012−1=10101011

B=1010+11011+1=10111012B=1010+11011+1=10111012

Ta lại có:

110101011=110111−10101011=11011

110111012=110121−10111012=11012

Vì 11011>1101210101011<10111012A<B

25 tháng 4 2019

Ta có: \(A=\frac{10^{11}-1}{10^{12}-1}\)=> 10A=\(\frac{10^{12}-10}{10^{12}-1}\)= 1 - \(\frac{9}{10^{12}-1}\)

\(B=\frac{10^{10}+1}{10^{11}+1}\)=> 10B=\(\frac{10^{11}+10}{10^{11}+1}\)= 1 + \(\frac{9}{10^{11}+1}\)

Vì 10B>1; 10A<1

=> 10B>10A

=> B>A

vậy B>A