Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3400 = 34.100
4300 = 43.100
=(34)100 và (43)100
= 12100 và 12100
Vì 12100 = 12100 =>3400 = 4300
TICK NHA BẠN
Ta có -14/21=-2/3=-2.2/3x2=-4/6
-60/72=-5/6
Vì -5<-4
=>-5/6<-4/6
Vậy -60/12<-14/21
Dựa vào bài tớ nêu, ta đã biết bạn Nguyễn Tuấn Minh sai ở chỗ nào.
Chính ở chỗ này:
3 ( 40 + n ) = 120 + n
Sai ở chỗ: Còn thừa số 3 nên bạn phải nhân n với 3 nhưng bạn quên nhân nên chỉ ghi luôn là n mà không ghi 3n.
Sửa lại cho đúng: 3 ( 40 + n ) = 120 + 3n
Rất mong bạn và các bạn khác không mắc thêm các lỗi sai như thế. Hãy tham khảo bài tớ nhé!
a, Ta có : 5 < 7 nên \(\frac{1}{5}>\frac{1}{7}\)
b, Ta có : \(\frac{-3}{4}=\frac{\left(-3\right).5}{4.5}=\frac{-15}{20};\frac{2}{5}=\frac{2.4}{5.4}=\frac{8}{20}\)
Vì ( -15 ) < 8 nên \(\frac{-15}{20}< \frac{8}{20}\)hay \(\frac{-3}{4}< \frac{2}{5}\)
c, Ta có : \(\frac{-5}{7}=\frac{\left(-5\right).2}{7.2}=\frac{-10}{14};\frac{-3}{14}=\frac{-3}{14}\)
Vì ( -10 ) < ( -3 ) nên \(\frac{-10}{14}< \frac{-3}{14}\)hay \(\frac{-5}{7}< \frac{-3}{14}\)
\(\frac{3}{-4}=-\frac{3}{4}\)
\(\Rightarrow\)So sánh: \(-\frac{3}{4}..\frac{-1}{4}\)
Tới đây có kết luận chưa?
2^161>2^160, 2^160=2^4*40=16^40
16^40>13^40
=> 2^161>13^40
a) Ta có:
+) \(\dfrac{1}{2}=\dfrac{3}{6}\)
+) \(\dfrac{1}{3}=\dfrac{2}{6}\)
+) \(\dfrac{2}{3}=\dfrac{4}{6}\)
=> \(\dfrac{2}{6}< \dfrac{3}{6}< \dfrac{4}{6}\)
hay \(\dfrac{1}{3}< \dfrac{1}{2}< \dfrac{2}{3}\)
b) Ta có:
+) \(\dfrac{4}{9}=\dfrac{56}{126}\)
+) \(-\dfrac{1}{2}=-\dfrac{63}{126}\)
+) \(\dfrac{3}{7}=\dfrac{54}{126}\)
=> \(-\dfrac{63}{126}< \dfrac{54}{126}< \dfrac{56}{126}\)
hay \(-\dfrac{1}{2}< \dfrac{3}{7}< \dfrac{4}{9}\)
c) Ta có:
+) \(\dfrac{27}{82}=\dfrac{2025}{6150}\)
+) \(\dfrac{26}{75}=\dfrac{2132}{6150}\)
=> \(\dfrac{2025}{6150}< \dfrac{2132}{6150}\)
hay \(\dfrac{27}{82}< \dfrac{26}{75}\)
d) Ta có:
+) \(-\dfrac{49}{78}=-\dfrac{4655}{7410}\)
+) \(-\dfrac{64}{95}=-\dfrac{4992}{7410}\)
=> \(-\dfrac{4665}{7410}>-\dfrac{4992}{7410}\)
hay \(-\dfrac{49}{78}>-\dfrac{64}{95}\)
\(\frac{3}{4}\)>\(\frac{-1}{-4}\)