Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
$A=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}$
$\Rightarrow 2A=1+\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{16}$
$\Rightarrow A=2A-A=1-\frac{1}{32}< 1-\frac{1}{2004}$
Hay $A< \frac{2003}{2004}$
Hay $A< B$
6 mũ 37>16 mũ 12
Hoặc 6 mũ 37<16 mũ 12
Hoặc 6 mũ 37=16 mũ 12
Ta có:\(\frac{2017^{18}+1}{2017^{17}+1}>1\)
\(\Rightarrow\frac{2017^{18}+1}{2017^{17}+1}>\frac{2017^{18}+1+2016}{2017^{17}+1+2016}=\frac{2017^{18}+2017}{2017^{17}+2017}\)\(=\frac{2017\left(2017^{17}+1\right)}{2017\left(2017^{16}+1\right)}=\frac{2017^{17}+1}{2017^{16}+1}\)
Vậy \(\frac{2017^{17}+1}{2017^{16}+1}< \frac{2017^{18}+1}{2017^{17}+1}\)
Thanks you nhiều nha,lần sau nhớ giải hộ mình các bài toán khác nữa nha
Ta có: (+) (1/32)^7 = [(1/2)^5]^7 =(1/2)^35
(+) (1/16)^9= [(1/2)^4]^9 =(1/2)^36
Vì 35 <36
=> (1/2)^35 > (1/2)^36
=> (1/32)^7 > (1/16)^9