Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=1+5+5^2+..+5^{49}+5^{50}\)
\(5A=5+5^2+5^3+...+5^{50}+5^{51}\)
\(5A-A=\left(5+5^2+5^3+...+5^{51}\right)-\left(1+5+5^2+...+5^{50}\right)\)
\(4A=\left(5-5\right)+\left(5^2-5^2\right)+...+\left(5^{50}+5^{50}\right)+5^{51}-1\)
\(4A=0+0+...+0+5^{51}-1\)
\(4A=5^{51}-1\)
\(A=\frac{5^{51}-1}{4}\)
Ta có 2A=21+22+23+...+251
=> A= (21+22+23+...+251) - ( 20+21+22+23+...+250)
=> A= 251 - 20 < 251=B
=> A<B
Bài 1:
a, 2x-15=17
=>2x=21
=>x=1
b)(7x-11)3=25*52+200
=>(7x-11)3=32*25+200
=>(7x-11)3=800+200
=>(7x-11)3=103
=>7x-11=10
=>7x=21
=>x=3
Bài 2:
a,523 và 6.522
6.522=(5+1).522=523+5>523
=>523<6.522
b,c tương tự
\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{11^2}=0,558032194\)
\(\frac{5}{12}=0,416666666\)
\(\Rightarrow0,558032194\)> \(0,4166666667\)
Câu 2:
Ta có: \(21^{15}=\left(3.7\right)^{15}=3^{15}.7^{15}\)
mà \(27^5.49^8=\left(3^3\right)^5.\left(7^2\right)^8=3^{3.5}.7^{2.8}=3^{15}.7^{16}\)
Vì \(15< 16\)\(\Rightarrow7^{15}< 7^{16}\)
\(\Rightarrow3^{15}.7^{15}< 3^{15}.7^{16}\)\(\Rightarrow21^{15}< 27^5.49^8\)
Ta có:
Đặt A=1+2+2^2+....+2^50
A.2 =2+2^2+2^3+.........+2^51
A.2-A=2^51-1
A=2^51-1
Ta thấy: 2^51-1=2^49.2^2-1=2^49.4-1<5.2^49