K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 3 2021

Gọi G là trọng tâm tam giác\(\Rightarrow\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

Đặt \(P=MA^2+MB^2+MC^2=\left(\overrightarrow{MG}+\overrightarrow{GA}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GB}\right)^2+\left(\overrightarrow{MG}+\overrightarrow{GC}\right)^2\)

\(=3MG^2+GA^2+GB^2+GC^2+2\overrightarrow{MG}\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)\)

\(=3MG^2+GA^2+GB^2+GC^2\)

Do  \(GA^2+GB^2+GC^2\) ko đổi nên \(P_{min}\) khi \(MG_{min}\Leftrightarrow M\) là chân đường vuông góc hạ từ G xuống BC

\(\Rightarrow\dfrac{CM}{BC}=\dfrac{2}{3}\Rightarrow\dfrac{BM}{BC}=\dfrac{1}{3}\)

\(\Rightarrow\dfrac{S_{ABM}}{S_{ABC}}=\dfrac{1}{3}\)

30 tháng 4 2021

Ta có : \(0< \alpha< \dfrac{\pi}{2}\)

=> \(\sin\alpha>0,\cos\alpha>\text{0},\tan\alpha>\text{0},\cot\alpha>\text{0}\)

a, Ta có : \(\sin\left(\alpha-\pi\right)=-\sin\left(\pi-\alpha\right)=-\left[-\sin\left(\alpha\right)\right]=\sin\alpha\)

=> \(sin\left(\alpha-\pi\right)>\text{0}\)

b, \(\cos\left(\dfrac{3\pi}{2}-\alpha\right)=\cos\left(\pi+\dfrac{\pi}{2}-\alpha\right)=-\cos\left(\dfrac{\pi}{2}-\alpha\right)=-sin\alpha\)

=> \(\cos\left(\dfrac{3\pi}{2}-\alpha\right)< \text{0}\)

 

30 tháng 4 2021

c, \(tan\left(\alpha+\pi\right)=tan\alpha\)

=> \(tan\left(\alpha+\pi\right)>\text{0}\)

d, \(cot\left(\alpha+\dfrac{\pi}{2}\right)=-tan\alpha\)

=> \(cot\left(\alpha+\dfrac{\pi}{2}\right)< \text{0}\)

24 tháng 10 2018

\(5x=8y=20z\Rightarrow\dfrac{x}{160}=\dfrac{y}{100}=\dfrac{z}{40}=\dfrac{x-y-z}{160-100-40}=\dfrac{3}{20}\)

\(\Rightarrow\left\{{}\begin{matrix}x=24\\y=15\\z=6\end{matrix}\right.\)

24 tháng 10 2018

Lần sau đăng ở mục Toán 7 nha bạn :)

\(5x=8y=20z\Leftrightarrow\left\{{}\begin{matrix}5x=8y\\8y=20z\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{8}=\dfrac{y}{5}\\\dfrac{y}{20}=\dfrac{z}{8}\end{matrix}\right.\Leftrightarrow\dfrac{x}{32}=\dfrac{y}{20}=\dfrac{z}{8}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\dfrac{x}{32}=\dfrac{y}{20}=\dfrac{z}{8}=\dfrac{x-y-z}{32-20-8}=\dfrac{3}{4}\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}.32=24\\y=\dfrac{3}{4}.20=15\\z=\dfrac{3}{4}.8=6\end{matrix}\right.\)

Vậy ...

26 tháng 9 2016

Sao tự nhiên thấy đắng lòng quá, e cx đang định hỏi bài nỳ. Nghĩ hoài hổng ra. haizz... khocroi

26 tháng 9 2016

Sa mạc lời, quả thực rất đắng lòng. Haizz...gianroi