Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Với PT bậc 2, nếu \(z_1\) là một nghiệm phức thì nghiệm \(z_2\) còn lại chính là số phức liên hợp của \(z_1\). Khi đó áp dụng hệ thức Viete:
\(\left[{}\begin{matrix}W=\dfrac{z_1+2016^{2017}}{z_2+1}=\dfrac{z_1+z_1z_2}{z_2+1}=z_1\\W=\dfrac{z_2+2016^{2017}}{z_1+1}=\dfrac{z_2+z_1z_2}{z_1+1}=z_2\end{matrix}\right.\)
Vì \(z_1,z_2\) là hai số liên hợp của nhau nên có phần thực như nhau. Do đó phần thực của \(W\) chính bằng \(\frac{z_1+z_2}{2}=1\) (theo hệ thức Viete)
Đáp án B
đặc : \(z=a+bi\) với \(a;b\in R\) và \(i^2=-1\)
ta có : \(\left|z\right|-2\left|\overline{z}\right|=-7+3i+z\Leftrightarrow\left|z\right|-2\left|\overline{z}\right|=\left(a-7\right)+\left(b+3\right)i\)
\(\Leftrightarrow-\sqrt{a^2+b^2}=\left(a-7\right)+\left(b+3\right)i\)
\(\Leftrightarrow\left[{}\begin{matrix}b+3=0\\a-7=-\sqrt{a^2+b^2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}b=-3\\a-7=-\sqrt{a^2+9}\end{matrix}\right.\)
\(\Rightarrow\left(a-7\right)^2=a^2+9\Leftrightarrow a^2-14a+49=a^2+9\Leftrightarrow a=\dfrac{20}{7}\)
\(\Rightarrow z=\dfrac{20}{7}-3i\)
\(\Rightarrow w=1-z+z^2=1-\dfrac{20}{7}+3i+\left(\dfrac{20}{7}-3i\right)^2\)
\(=1-\dfrac{20}{7}+3i+\dfrac{400}{49}-\dfrac{120}{7}i-9=\dfrac{-132}{49}-\dfrac{99}{7}i\)
\(\Rightarrow\left|w\right|=\sqrt{\left(\dfrac{-132}{49}\right)^2+\left(\dfrac{-99}{7}\right)^2}=???\)
khác tất cả các đáp án \(\Rightarrow\) ai xem thử có sai chổ nào không chỉ với .
Câu 1:
Gọi \(A\left(1;-1\right)\) và \(B\left(2;3\right)\Rightarrow\) tập hợp \(z\) thoả mãn điều kiện đề bài là đường trung trực d của đoạn AB, ta dễ dàng viết được phương trình d có dạng \(4x-y-5=0\)
Gọi \(M\left(-2;-1\right)\) và \(N\left(3;-2\right)\) và \(I\left(a;b\right)\) là điểm bất kì biểu diễn \(z\Rightarrow I\in d\) \(\Rightarrow P=IM+IN\). Bài toán trở thành dạng cực trị hình học phẳng quen thuộc: cho đường thẳng d và 2 điểm M, N cố định, tìm I thuộc d để \(P=IM+IN\) đạt GTNN
Thay toạ độ M, N vào pt d ta được 2 giá trị trái dấu \(\Rightarrow M;N\) nằm về 2 phía so với d
Gọi \(C\) là điểm đối xứng M qua d \(\Rightarrow IM+IN=IC+IN\), mà \(IC+IN\ge CN\Rightarrow P_{min}=CN\) khi I, C, N thẳng hàng
Phương trình đường thẳng d' qua M và vuông góc d có dạng:
\(1\left(x+2\right)+4\left(y+1\right)=0\Leftrightarrow x+4y+6=0\)
Gọi D là giao điểm d và d' \(\Rightarrow\left\{{}\begin{matrix}x+4y+6=0\\4x-y-5=0\end{matrix}\right.\) \(\Rightarrow D\left(\frac{14}{17};-\frac{29}{17}\right)\)
\(\overrightarrow{MD}=\overrightarrow{DC}\Rightarrow C\left(-2;-1\right)\Rightarrow P_{min}=CN=\sqrt{\left(3+2\right)^2+\left(-2+1\right)^2}=\sqrt{26}\)
Bài 2:
Tập hợp \(z\) là các điểm M thuộc đường tròn (C) tâm \(I\left(0;1\right)\) bán kính \(R=\sqrt{2}\) có phương trình \(x^2+\left(y-1\right)^2=2\)
\(\Rightarrow\left|z\right|=OM\Rightarrow\left|z\right|_{max}\) khi và chỉ khi \(M;I;O\) thẳng hàng và M, O nằm về hai phía so với I
\(\Rightarrow M\) là giao điểm của (C) với Oy \(\Rightarrow M\left(0;1+\sqrt{2}\right)\Rightarrow\) phần ảo của z là \(b=1+\sqrt{2}\)
Câu 3:
\(\overline{z}=\left(i+\sqrt{2}\right)^2\left(1-\sqrt{2}i\right)=5+\sqrt{2}i\)
\(\Rightarrow z=5-\sqrt{2}i\Rightarrow b=-\sqrt{2}\)
Câu 4
\(z.z'=\left(m+3i\right)\left(2-\left(m+1\right)i\right)=2m-\left(m^2+m\right)i+6i+3m+3\)
\(=5m+3-\left(m^2+m-6\right)i\)
Để \(z.z'\) là số thực \(\Leftrightarrow m^2+m-6=0\Rightarrow\left[{}\begin{matrix}m=2\\m=-3\end{matrix}\right.\)
Câu 5:
\(A\left(-4;0\right);B\left(0;4\right);M\left(x;3\right)\)
\(\left\{{}\begin{matrix}\overrightarrow{AB}=\left(4;4\right)\\\overrightarrow{AM}=\left(x+4;3\right)\end{matrix}\right.\) \(\Rightarrow A,B,M\) khi và chỉ khi \(\frac{x+4}{4}=\frac{3}{4}\Rightarrow x=-1\)
Câu 6:
\(z=3z_1-2z_2=3\left(1+2i\right)-2\left(2-3i\right)=-1+12i\)
\(\Rightarrow b=12\)
Câu 7:
\(w=\left(1-i\right)^2z\)
Lấy môđun 2 vế:
\(\left|w\right|=\left|\left(1-i\right)^2\right|.\left|z\right|=2m\)
Câu 8:
\(3=\left|z-1+3i\right|=\left|z-1-i+4i\right|\ge\left|\left|z-1-i\right|-\left|4i\right|\right|=\left|\left|z-1-i\right|-4\right|\)
\(\Rightarrow\left|z-1-i\right|\ge-3+4=1\)
Viết lại đề bài đi bạn, bạn nhầm đề rồi thì phải, ở \(z_1;z_2\) đầu biểu thức có gì đó ko ổn
\(\left|z\right|=1\Rightarrow z=cosx+i.sinx\)
\(z^3-z+2=cos3x+i.sin3x-cosx-i.sinx+2\)
\(=\left(cos3x-cosx+2\right)-i.\left(sin3x-sinx\right)\)
\(=\left(2-2sin2x.sinx\right)-i.2cos2x.sinx\)
\(=2\left[\left(1-sin2x.sinx\right)-i.cos2x.sinx\right]\)
\(\Rightarrow A=\left|z^3-z+2\right|=2\sqrt{\left(1-sin2x.sinx\right)^2+cos^22x.sin^2x}\)
\(A=2\sqrt{1-2sin2x.sinx+sin^22x.sin^2x+cos^22x.sin^2x}\)
\(A=2\sqrt{1-4sin^2x.cosx+sin^2x}\)
\(A=2\sqrt{1-4\left(1-cos^2x\right)cosx+1-cos^2x}\)
\(A=2\sqrt{4cos^3x-cos^2x-4cosx+2}\)
\(A_{max}\) khi \(4cos^3x-cos^2x-4cosx+2\) đạt max
Xét hàm \(f\left(t\right)=4t^3-t^2-4t+2\) trên \(\left[-1;1\right]\)
\(f'\left(t\right)=12t^2-2t-4=0\Rightarrow\left[{}\begin{matrix}t=-\frac{1}{2}\\t=\frac{2}{3}\end{matrix}\right.\)
\(\Rightarrow f\left(t\right)\) đạt max tại \(t=-\frac{1}{2}\) hay \(A_{max}\) khi \(a=cosx=-\frac{1}{2}\)
\(\Rightarrow b^2=sin^2x=1-cos^2x=\frac{3}{4}\)
\(\Rightarrow P=2a+4b^2=-1+3=2\)
Gọi z=a+bi \(\left(a^2+b^2\ne0\right)\)
theo đề \(\left|z\right|=\sqrt[]{2017}\Rightarrow a^2+b^2=2017\)
\(w=\dfrac{2017+2z}{2+z}\Rightarrow\left|w\right|=\left|\dfrac{2017+2z}{2+z}\right|=\dfrac{\left|2017+2z\right|}{\left|2+z\right|}\)
\(\Rightarrow\left|w\right|=\dfrac{\left|2017+2a+2bi\right|}{\left|2+a+bi\right|}=\sqrt{\dfrac{\left(2017+2a\right)^2+\left(2b\right)^2}{\left(2+a\right)^2+b^2}}\)
\(\Rightarrow\left|w\right|=\sqrt{\dfrac{2017^2+4.2017a+4a^2+4b^2}{4+4a+a^2+b^2}}=\sqrt{\dfrac{2017\left(4+4a+2017\right)}{4+4a+2017}}=\sqrt{2017}\)
ths bạn nhiều nha