Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a
ta có 1 số hoàn hảo = tổng các ước = 2 lần nó
ta có các ước của 28=[1,2,,4,7,14,28]
mà tổng các tích của nó là 1+2+4+7+14+28=56=28x2
nên 28 là số hoàn hảo
b
gọi a1,a2,a3,......ak là ước của n
vì n hoàn hảo nên
[n:a1]+[n:a2]+..................+[n:ak]=2n
=[nx[1;a1]+nx[1:a2]+...............+nx[1:ak]=2n
=nx[1;a1+1:a2+1:a3+...............+1:ak]=2n
nên [1;a1+1;a2+1;a3+...............+1:ak]=2
mình chỉ giúp được bạn câu a,b thôi chứ không giúp được câu c xin lỗi nhé
mình cũng học lớp 6 nè
tick rồi mình giải chi tiết cho
n có 48 ước \(\Rightarrow\)( x + 1 ) ( y + 1 ) = 48
48 = 2 . 24; 3 . 16; 4 . 12; 6 . 8; ....
= ( 1 + 1 ) ( 23 + 1 ); ( 2 + 1 ) ( 15 + 1 ); ( 3 + 1 ) ( 11 + 1 ); ( 5 + 1 ) ( 7 + 1 );....
Trong đó có : ( 5 + 1 ) ( 7 + 1 ) = 48
Và: 5 + 7 = 12
\(\Rightarrow\)x = 5; y = 7
\(\Rightarrow\)n = 25 . 37 = 69984
Hk tốt
bài phạm kim cương thiếu!
còn 2^7 * 3^5 thì sao =31104 có (7+1)*(5+1)=48 ước
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!