Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi a,b,c lfn lượt là số đo các góc tỉ lệ với 3;5;7.
=>\(\frac{a}{3}\)=\(\frac{b}{5}\)=\(\frac{c}{7}\)
Theo dãy tỉ số bằng nhau ta có: \(\frac{a}{3}\)=\(\frac{b}{5}\)=\(\frac{c}{7}\)=\(\frac{a+b+c}{3+5+7}\)=\(\frac{180}{15}\)=12
=> \(\frac{a}{3}\)=12 => a=36
\(\frac{b}{5}\)=12 =>b=60
\(\frac{c}{7}\)=12 =>c=84
Vậy số đo các góc của tam giác là: 36 độ,60 độ,84 độ
**k nha!!
Gọi ba góc của một tam giác lần lượt là x , y , z lần lượt tỉ lệ với 1 ; 2 ; 3
Theo đề bài ta có : \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) và x + y + z = 180 ( vì tổng 3 góc trong một tam giác là 180 )
Theo t/c của DTSBN ta có : \(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}=\frac{x+y+z}{1+2+3}=\frac{180}{6}=30\)
\(\frac{x}{1}=30\Rightarrow x=30.1=30\)
\(\frac{y}{2}=30\Rightarrow y=30.2=60\)
\(\frac{z}{3}=30\Rightarrow z=30.3=90\)
mình ghi rõ lời giải và cách làm k nah
Đặt số đo các góc lần lượt là: a, b, c (độ)
Ta có: a + b + c = 180 độ
Áp dụng tính chất dãy tỉ số = nhau, ta có:
\(\dfrac{a}{5}=\dfrac{b}{3}=\dfrac{c}{2}=\dfrac{a+b+c}{5+3+2}=\dfrac{180}{10}=18\)
\(\Rightarrow\dfrac{a}{5}=18\Rightarrow a=90\)
\(\Rightarrow\dfrac{b}{3}=18\Rightarrow b=54\)
\(\Rightarrow\dfrac{c}{2}=18\Rightarrow c=36\)
a, góc ở đỉnh bảng 80o
b, góc ở đáy bằng 55o
c,số đo góc B và góc C=(180-góc A) /2
1
a) Vì trong một tam giác cân , hai góc ở đấy bằng nhau nên tổng 2 góc ở đáy của tam giác cân đó có số đo độ là :
50 + 50 = 1000
=> Góc ở đỉnh của tam giác cân có số đo độ là :
1800 - 1000 = 800
b) Vì trong một tam giác cân , hai góc ở đấy bằng nhau nên nếu 1 góc ở đáy của tam giác đó bằng 700 => góc còn lại ở đáy phải bằng 700
c) Số đo góc B và góc C bằng :
( 180 - A)/2
Gọi số đo của các góc A, B, C lần lượt là a;b;c (a;b;c > 0)
Vỉ các góc đó lần lượt tỉ lệ với các số 2;3;5 nên
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\) và a + b + c = 180o
Áp dụng tính chất của dãy tỉ số = nhau ta có:
\(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=\frac{a+b+c}{2+3+5}=\frac{180^o}{10}=18^o\)
\(\Rightarrow\hept{\begin{cases}a=18^o.2=36^o\\b=18^o.3=54^o\\c=18^o.5=90^o\end{cases}}\)
Vậy góc A = 36o; góc B = 54o; góc C = 90o
Gọi độ dài 3 cạnh của tam giác lần lượt là a,b,c
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{2}=\frac{b}{4}=\frac{c}{5}=\frac{a+b+c}{2+4+5}=\frac{44}{11}=4\)
\(\Rightarrow\frac{a}{2}=4\Rightarrow a=4.2=8\left(m\right)\)
\(\frac{b}{4}=4\Rightarrow b=4.4=16\left(m\right)\)
\(\frac{c}{5}=4\Rightarrow c=4.5=20\left(m\right)\)
Vậy độ dài 3 cạnh của tam giác đó lần lượt là 8m, 16m, 20m
\(\text{Gọi x;y;z lần lượt là số đo góc 1;góc 2;góc 3:}\)
(đk:x;y;z>0;đơn vị:độ)
\(\text{Ta có:}\frac{x}{4}=\frac{y}{6}=\frac{z}{8}\text{ và }x+y+z=180^0\)
\(\text{Áp dụng tính chất dãy tỉ số bằng nhau:}\)
\(\frac{x}{4}=\frac{y}{6}=\frac{z}{8}=\frac{x+y+z}{4+6+8}=\frac{180}{18}=10\)
\(\Rightarrow x=10.4=40^0\)
\(y=10.6=60^0\)
\(z=10.8=80^0\)
\(\text{Vậy số đo góc x là:}40^0\)
\(\text{Vậy số đo góc y là:}60^0\)
\(\text{Vậy số đo góc z là:}80^0\)