Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta co : \(\frac{-18}{6}\)< \(\frac{a}{6}\)< \(\frac{6}{18}\)
=> a = -17 đến 5
1/ Ta có \(\frac{1}{3}< \frac{9}{x}< \frac{1}{2}\)
\(\Rightarrow\frac{9}{27}< \frac{9}{x}< \frac{9}{18}\)
\(\Rightarrow27>x>18\)
Vì \(x\in Z\Rightarrow x\in\left\{19,20,...,26\right\}\)
Vậy....
đề này mới đúng @@
-18/6 < a/6 < 2/6
=> -18 < a < 2
còn lại đếm tay @@
19 a
\(-\frac{17}{21}:\left(\frac{5}{4}-\frac{2}{5}\right)< x+\frac{4}{7}< 1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}\)
\(\Leftrightarrow-\frac{17}{21}:\frac{17}{20}< x+\frac{4}{7}< \frac{12}{12}-\frac{6}{12}+\frac{4}{12}-\frac{3}{12}\)
\(\Leftrightarrow-\frac{17}{21}.\frac{20}{17}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x+\frac{4}{7}< \frac{7}{12}\)
\(\Leftrightarrow-\frac{20}{21}< x< \frac{1}{84}\)
\(\Leftrightarrow-\frac{80}{84}< x< \frac{1}{84}\)
\(\Leftrightarrow-80< x< 1\Leftrightarrow x\in\left\{-79;-78;...;0\right\}\)
mà để Giá trị nguyên lớn nhất của x
\(\Rightarrow x=-1\)
giá trị x nguyên thỏa mãn:
\(\frac{6}{5}< x-\frac{3}{2}< \frac{12}{5}\)
các bn giải đầy đủ giúp mk nha
Ta có:
\(\frac{6}{5}< x-\frac{3}{2}< \frac{12}{5}\)
\(=>\frac{12}{10}< x-\frac{15}{10}< \frac{24}{10}\)
\(=>\frac{12+15}{10}< x< \frac{24+15}{10}\)
\(=>\frac{27}{10}< x< \frac{39}{10}\) (mà x là số nguyên)
\(=>x=3\)
\(-3<\frac{a}{6}<\frac{1}{3}\Rightarrow-18\)và a chia hết cho 6 \(\Leftrightarrow a=\left\{-18;-12;-6;0\right\}\)
Bài giải
a, \(3\frac{1}{3}\text{ : }2\frac{1}{2}-1< x< 7\frac{2}{3}\cdot\frac{3}{7}+\frac{5}{2}\)
\(\frac{10}{3}\text{ : }\frac{5}{2}-1< x< \frac{23}{3}\cdot\frac{3}{7}+\frac{5}{2}\)
\(\frac{4}{3}-1< x< \frac{23}{7}+\frac{5}{2}\)
\(\frac{1}{3}< x< \frac{81}{14}\)
\(\Rightarrow\text{ }0,\left(3\right)< x< 5,78...\)
\(\Rightarrow\text{ }x\in\left\{1\text{ ; }2\text{ ; }3\text{ ; }4\text{ ; }5\right\}\)
b, \(\frac{1}{2}-\left(\frac{1}{3}+\frac{1}{4}\right)< x< \frac{1}{48}-\left(\frac{1}{16}-\frac{1}{6}\right)\)
\(\frac{1}{2}-\frac{7}{12}< x< \frac{1}{48}+\frac{5}{48}\)
\(-\frac{1}{12}< x< \frac{1}{8}\)
\(\Rightarrow\text{ }-0,08\left(3\right)< x< 0,125\)
\(\Rightarrow\text{ }x\in\varnothing\)
-3 < \(\frac{a}{6}\) < \(\frac{1}{3}\)
=> \(\frac{-18}{6}\) < \(\frac{a}{6}\) < \(\frac{2}{6}\)
=> a thuộc {-17; -16; -15;.......; 0; 1}
=> Có 19 giá trị nguyên của a