Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ấy ấy
toán vui tuần này thì pk để cả tuần chứ sao lại có 10p thôi
lạ quá
1) Các phân số trên có các mẫu số là 3, 7, 9
Vậy để a nhỏ nhất làm các tích trên là số nguyên thì a phải là BCNN(3,7,9) = 63
=> a=63
2) \(\frac{4}{5}< \frac{a}{b}< \frac{14}{15}\Rightarrow\frac{4b}{5}< a< \frac{14b}{15}\)
\(\Rightarrow\frac{32b}{5}< 8a< \frac{112b}{15}\Rightarrow\frac{62b}{5}< 8a+6b< \frac{202b}{15}\Rightarrow\frac{62}{5}b< 2012< \frac{202}{15}b\)
\(\Rightarrow149< b\le162\)Vì \(a=\frac{2012-6b}{8}\Rightarrow130< a\le139\)
Xét \(8a+6b=2012\Leftrightarrow4a+3b=1006\)Vì 4a và 1006 là các số chẵn nên 3b phải chẵn => b chẵn
Vì 4a chia hết cho 4 còn 1006 chia 4 dư 2 nên 3b chia 4 dư 2 => b chia 4 dư 2
Lúc này b chỉ có thể là 150, 154, 158, 162 --> thế vào tìm a
Vậy các phân số cần tìm là: \(\frac{139}{150},\frac{136}{154},\frac{133}{158},\frac{130}{162}\)
b,\(D=2.\left(\frac{1}{3}+\frac{1}{15}+\frac{1}{35}+...+\frac{1}{n.\left(n+2\right)}\right)\)
\(\Rightarrow D=\frac{2}{3}+\frac{2}{15}+\frac{2}{35}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=\frac{2}{1.3}+\frac{2}{3.5}+\frac{2}{5.7}+...+\frac{2}{n.\left(n+2\right)}\)
\(\Rightarrow D=1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{n}-\frac{1}{n+2}\)
\(\Rightarrow D=1-\frac{1}{n+2}=\frac{n}{n+2}< \frac{n+2}{n+2}=1\left(1\right)\)
\(\Rightarrow D=\frac{n}{n+2}>0\left(2\right)\)
Từ (1);(2)\(\Rightarrow0< D< 1\)
\(\Rightarrowđpcm\)
a,\(C>0\)
\(C=\frac{1}{11}+\frac{1}{12}+...+\frac{1}{19}< 9;\frac{1}{11}< 1\)
\(\Rightarrow0< A< 1\)
\(\Rightarrow A\notinℤ\)
c,\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
Ta quy đồng 3 số đầu
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}>\frac{6.2}{12}=1\)
\(E=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}\)
\(=\frac{2}{6}+\frac{2}{8}+\frac{2}{10}+\frac{2}{7}+\frac{2}{9}+\frac{2}{11}< \frac{6.2}{6}=2\)
\(1< E< 2\)
\(E\notinℤ\)
\(\frac{1}{5}A=\frac{1}{5}.\left(\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{20}}\right)\)
\(\Rightarrow\frac{1}{5}A=\frac{1}{5^2}+\frac{1}{5^3}+...+\frac{1}{5^{20}}\)
\(\Rightarrow\frac{1}{5}A-A=\left(\frac{1}{5^2}+...+\frac{1}{5^{21}}\right)-\left(\frac{1}{5}+...+\frac{1}{5^{20}}\right)\)
\(-\frac{4}{5}A=\frac{1}{5^{21}}-\frac{1}{5}\)
\(\Rightarrow A=\left(\frac{1}{5^{21}}-\frac{1}{5}\right):\left(-\frac{4}{5}\right)\)
các câu còn lại tương tự thôi
B1 c2
dùng xích ma \(\text{∑}^{20}_1\left(\frac{1}{5^x}\right)=0,25=\frac{1}{4}\)
chỗ phía dưới là 1 nha nó bị che
Bn tham khảo nhé:
Câu hỏi của Hoàng Phú - Toán lớp 7 - Học toán với OnlineMath
~ rất vui vì giúp đc bn ~
Bài làm
\(A=1-\frac{1}{1+2}+\frac{1}{2+3}+\frac{1}{3+4}+...+\frac{1}{18+19}+\frac{1}{19+20}\)
\(A=1-\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{18}-\frac{1}{19}+\frac{1}{19}-\frac{1}{20}\)
\(A=1-1-\frac{1}{20}\)
\(A=0-\frac{1}{20}\)
\(A=-\frac{1}{20}\)
\(A=-0,05\)
=> A không phải là số nguyên ( đpcm )
# Chúc bạn học tốt #