Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có : 7/12 = 7*8/12*8 = 56/96
5/8 = 5*12/8*12 = 60/96
Vì 56 < 57 < 60 nên 56/96 < 57/96 < 60 / 96
Vậy phân số cần tìm là 57/96
b) Ta có : 7/12 = 7*8/12*8 = 56/96
5/8 = 5*12/8*12 = 60/96
Vì 56 < 57 ; 58 < 60 nên 56/96 < 57/96 ; 58/96 < 60/96
Vậy các phân số cần tìm là 57/96 và 58/96
c) Ta có : 7/12 = 7*24/12*24 = 168/288
5/8 = 5*36/8*36 = 180/288
Vì 168 < 169 ; 170 ; 171 ; 172 ; 173 ; 174 ; 175 ; 176 ; 177 < 180 nên 168/288 < 169/288 ; 170/288 ; 171/288 ; 172/288 ; 173/288 ; 174/288 ; 175/288 ; 176/288 ; 177/288 < 180/288
Vậy các phân số cần tìm là : 169/288 ; 169/288 ; 170/288 ; 171/288 ; 172/288 ; 173/288 ; 174/288 ; 175/288 ; 176/288 ; 177/288.
d) Gọi phân số cần tìm là y/15, ta có : 7/12 = 7*10/12*10 = 70/120
5/8 = 5*15/8*15 = 105/120
y/15 = y*8/15*8 = 8y/120
Vì 70 < 71 ; 72 ; 73 ; ..... ; 103 ; 104 < 105 nên 70/120 < 71/120 ; 72/120 ; 73/120 ; ..... ; 103/120 ; 104/120 < 105/120
=> y*8 thuộc {71 ; 72 ; 73 ; ..... ; 103 ; 104}
mà y*8 chia hết cho 8 nên y*8 thuộc {72 ; 80 ; 88 ; 96 ; 104}
y thuộc {9 ; 10 ; 11 ; 12 ; 13}
Vậy phân số cần tìm là : pick random 9 to 13/15
\(A=\frac{1}{30}+\frac{1}{42}+\frac{1}{56}+\frac{1}{72}+\frac{1}{90}+\frac{1}{110}+\frac{1}{132}\)
\(A=\frac{1}{5\cdot6}+\frac{1}{6\cdot7}+\frac{1}{7\cdot8}+\frac{1}{8\cdot9}+\frac{1}{9\cdot10}+\frac{1}{10\cdot11}+\frac{1}{11\cdot12}\)
\(A=\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+\frac{1}{7}-\frac{1}{8}+\frac{1}{8}-\frac{1}{9}+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}+\frac{1}{11}-\frac{1}{12}\)
\(A=\frac{1}{5}-\frac{1}{12}=\frac{7}{60}\)
Các phân số trên có dạng \(\frac{a}{n+2+a}\) với a = 6; 7; 8; ...; 65
\(\frac{a}{n+2+a}\)tối giản \(\Leftrightarrow\)ƯCLN(a; n+2+a) = 1 \(\Leftrightarrow\) ƯCLN(n+2; a) = 1
\(\Leftrightarrow\)n + 2 nguyên tố cùng nhau với mỗi số 6; 7; 8; ...; 65 và n + 2 nhỏ nhất
Do đó n + 2 = 67 (67 là số nguyên tố)
nên n = 65
1). Sx:-3/4 ; 1/-4 ; 2/5 ; 4/9
2). \(\frac{2.5.13}{26.35}+\frac{24.5-24}{4-28}+\frac{123.6+123.4}{3-126}=\frac{2.5.13}{2.13.5.7}+\frac{24.\left(5-1\right)}{4.\left(1-7\right)}+\frac{123.\left(6+4\right)}{-123}=\frac{1}{7}+4-10=\frac{1}{7}+\frac{42}{7}=\frac{43}{7}\)
\(\frac{1}{2}=\frac{3}{-6}\)vì \(1.-6=3.2\)
Các câu sau tương tự vậy ấy
Tk mk nha
Ta có :
\(H=\frac{15}{90.94}+\frac{15}{94.98}+\frac{15}{98.102}+...+\frac{15}{146.150}\)
\(H=\frac{15}{4}\left(\frac{4}{90.94}+\frac{4}{94.98}+\frac{4}{98.102}+...+\frac{4}{146.150}\right)\)
\(H=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+\frac{1}{98}-\frac{1}{102}+...+\frac{1}{146}-\frac{1}{150}\right)\)
\(H=\frac{15}{4}\left(\frac{1}{90}-\frac{1}{150}\right)\)
\(H=\frac{15}{4}.\frac{1}{225}\)
\(H=\frac{1}{60}\)
Vậy \(H=\frac{1}{60}\)
Chúc bạn học tốt ~
\(H=\frac{15}{90\cdot94}+\frac{15}{94\cdot98}+\frac{15}{98\cdot102}+...+\frac{15}{146\cdot150}\)
\(H=15\left(\frac{1}{90\cdot94}+\frac{1}{94\cdot98}+\frac{1}{98\cdot102}+...+\frac{1}{146\cdot150}\right)\)
\(H=15\left[\frac{1}{4}\left(\frac{4}{90\cdot94}+\frac{4}{94\cdot98}+\frac{4}{98\cdot102}+...+\frac{4}{146\cdot150}\right)\right]\)
\(H=15\left[\frac{1}{4}\left(\frac{1}{90}-\frac{1}{94}+\frac{1}{94}-\frac{1}{98}+\frac{1}{98}-\frac{1}{102}+...+\frac{1}{146}-\frac{1}{150}\right)\right]\)
\(H=15\left[\frac{1}{4}\left(\frac{1}{90}-\frac{1}{150}\right)\right]\)
\(H=15\left[\frac{1}{4}\cdot\frac{1}{225}\right]\)
\(H=15\cdot\frac{1}{900}\)
\(H=\frac{1}{60}\)