Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có:S=1+31+32+33+...+330
3S=3+32+33+...+331
3S−S=331−1
2S=34.7+3−1
2S=817.27−1
=>chữ số tận cùng của S là 3
=> S không phải là số chính phương
\(S=1+3^1+3^2+3^3+...+3^{30}\)
\(3S=3+3^2+3^3+...+3^{31}\)
\(3S-S=3^{31}-1\)
\(2S=3^{4.7+3}-1\)
\(2S=81^7.27-1\)
\(2S=\overline{......1}.27-1\)
\(2S=\overline{......7}-1=\overline{......6}\)
\(S=\overline{........3}\)
Vậy chữ số tận cùng của S là 3=> S không phải là số chính phương
a, \(S=2.1+2.3+2.3^2+...+2.3^{2004}\)
\(=2.\left(1+3+3^2+...+3^{2004}\right)\)
Đặt \(A=1+3+3^2+...+3^{2004}\)
\(\Rightarrow\) \(3A=3+3^2+3^3+...+3^{2005}\)
\(\Rightarrow\) \(2A=3^{2005}-1\)
\(\Rightarrow\) \(A=\frac{3^{2005}-1}{2}\)
\(\Rightarrow\) \(S=2.\frac{3^{2005}-1}{2}=3^{2005}-1\)
b, Ta có : \(3^{2005}=3^{4.501+1}=\left(3^4\right)^{501}.3\)
Mà \(\left(3^4\right)^{501}\) có chữ số tận cùng là 1
\(\Rightarrow\) \(\left(3^4\right)^{501}.3\) có chữ số tận cùng là 3
\(\Rightarrow\) \(3^{2005}\) có chữ số tận cùng là 3
\(\Rightarrow\) S có chữ số tận cùng là 2
\(\Rightarrow\) S không phải là số chính phương
Study well ! >_<
cho tổng S=1+3+32+33+...+330
tìm chữ số tận cùng của S.Từ đó ta suy ra Skhong phải là số chính phương
S=1+3+32+...+330
3S= 3+32+33+...+331
2S=331-1
331=34kx33=...1x...7=....7
=> chữ số tận cùng của 2S =...7-1=...6
=> chữ số tận cùng của S là ...8 hoặc...3 (ko là SCP)
Ta có S = 1 + 3 + 32 + 33 + .... + 330
3S = 3 + 32 + 33 + 34 + .... + 331
3S - S = (3 + 32 + 33 + 34 + ..... + 331) - (1 + 3 + 32 + 33 + ..... + 330)
2S = 331 - 1
Lại có 3311 = (34)7 x 33 = (........1)7 x 27 = (.......1) x 27 = (....7) => 2S có c/s tận cùng là 7 - 1 = 6
=> S có c/s tận cùng là 3 hoặc 8 mà số chính phương ko có tận cùng là 3 hoặc 8 => S ko phải số chính phương
ấn đúng cho mk nha các bạn!!!
Ta có : \(S=1+3+3^2+3^3+....+3^{30}\)
\(\Rightarrow3S=3+3^2+3^3+3^4+....+3^{31}\)
\(\Rightarrow2S=3^{31}-1\)
\(\Rightarrow2S=3^{4\cdot7+3}-1\)
\(\Rightarrow2S=81^7\cdot27-1\)
\(\Rightarrow2S=\)\(\overline{...1\cdot}27-1\)
\(\Rightarrow2S=\overline{...27}\)\(-1\)
\(\Rightarrow2S=\overline{...6}\)
\(\Rightarrow S=\overline{...3}\)Hay S ko là SCP