Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1.2+2.3+...+199.200
3A = 1.2.3 + 2.3.3 +...+ 199.200.3
3A = 1.2.(3 - 0) + 2.3.(4 - 1) +...+ 199.200. (201 - 198)
3A = 1.2.3 - 0.1.2 + 2.3.4 - 1.2.3 +...+ 199.200.201 - 198.199.200
3A = (1.2.3 + 2.3.4 +...+ 199.200.201) - (0.1.2 + 1.2.3 +...+ 198.199.200)
3A = 199.200.201 - 0.1.2
3A = 199.200.201
A = \(\frac{199.200.201}{3}=2666600\)
Ta có :
A = 1.2 + 2.3 + 3.4 + ... + 198.199 + 199.200
= 1.(1 + 1) + 2.(2 + 1) + 3.(3 + 1) + ... + 198(198 + 1) + 199(199 + 1)
= (1^2 + 1) + (2^2 + 2) + (3^2 + 3) + ... + (198^2 + 198) + (199^2 + 199)
= (1 + 2 + 3 + 4....+ 198 + 199) + (1^2 + 2^2 + 3^2 + ...+ 198^2 + 199^2)
* Dễ chứng minh :
....1 + 2 + 3 +...+ n = n(n + 1)/2
.... 1^2 + 2^2 +...+ n^2 = [n(n + 1)(2n + 1)]/6
Suy ra : A = [199.(199 + 1)]/2 + [199.(199 + 1)(2.199 + 1)]/6 = 2666600
3A =1.2.3 +2.3.(4-1) +3.4.(5-2) +4.5.(6-3)....+199.200.(201 -198)
= 1.2.3+2.3.4 -1.2.3 +3.4.5- 2.3.4 + 4.5.6 - 3.4.5 +......+ 199.200.201 -198.199.200
3A =199.200.201
A=199.200.67 =254600
Được rồi:Để ý nhé số hạng tổng quát của dãy có dạng:
\(\dfrac{a+b}{ab}=\dfrac{1}{a}+\dfrac{1}{b}\)
\(S=\dfrac{3}{1.2}-\dfrac{5}{2.3}+...-\dfrac{201}{100.101}\)
\(=\left(\dfrac{1}{1}+\dfrac{1}{2}\right)-\left(\dfrac{1}{2}+\dfrac{1}{3}\right)+..-\left(\dfrac{1}{100}+\dfrac{1}{101}\right)\)
\(=1-\dfrac{1}{101}=\dfrac{100}{101}\)
Đặt A = 1.2 + 2.3 + 3.4 + .... + 199.200
⇒ 3A = 1.2.3 + 2.3.3 + 3.4.3 + .... + 199.200.3
⇒ 3A = 1.2.3 + 2.3.( 4 - 1 ) + 3.4.( 5 - 2 ) + .... + 199.200.( 201 - 198 )
⇒ 3A = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 199.200.201 - 198.199.200
⇒ 3A = ( 1.2.3 - 1.2.3 ) + ( 2.3.4 - 2.3.4 ) + .... + ( 198.199.200 - 198.199.200 ) + 199.200.201
⇒ 3A = 199.200.201
⇒ 3A = \(\frac{199.200.201}{3}\)
\(=5\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{99.100}\right)\)
\(=5.\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)
\(=5\left(1-\dfrac{1}{100}\right)\)
\(=5.\dfrac{99}{100}=\dfrac{99}{20}\)
(92.3+93.4+...+9199.200).x=25(92.3+93.4+...+9199.200).�=25
⇒[9.(12−13+13−14+...+1199−1200)]x=25⇒[9.(12-13+13-14+...+1199-1200)]�=25
⇒[9.(12−1200)]x=25⇒[9.(12-1200)]�=25
⇒(9.99200) x=25⇒(9.99200)�=25
⇒ 891200x= 25⇒ 891200�=25
⇒ x=25:891200⇒ �=25:891200
⇒ x= 80891⇒ �=80891
Vậy, x=80891
\(A=\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{199\cdot200}\)
\(A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{199}-\frac{1}{200}\)
\(A=1-\frac{1}{200}\)
\(A=\frac{199}{200}\)
\(\frac{5}{1.2}+\frac{5}{2.3}+\frac{5}{3.4}+...+\frac{5}{x\left(x+1\right)}=\frac{9998}{9999}\)
\(\Leftrightarrow5\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{x}-\frac{1}{x+1}\right)=\frac{9998}{9999}\)
\(\Leftrightarrow5\left(1-\frac{1}{x+1}\right)=\frac{9998}{9999}\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{9998}{9999}\div5\)
\(\Leftrightarrow1-\frac{1}{x+1}=\frac{9998}{49995}\)
\(\Leftrightarrow\frac{1}{x+1}=1-\frac{9998}{49995}=\frac{39997}{49995}\)
\(\Leftrightarrow x=\frac{9998}{39997}\)
S = -5/1.2 + -5/2.3 + -5/3.4 + ... + -5/199.200
S= -5/1 - (-5)/2 +(-5)/2 - (-5)/3+....+ (-5)/199 - (-5)/200
S= -5/1 - (-5)/200
S= -5/1 + 5/200
S= -199/40
\(S=\frac{-5}{1\cdot2}+\frac{-5}{2\cdot3}+\frac{-5}{3\cdot4}+...+\frac{-5}{199\cdot200}\)
\(S=\frac{-5}{1}-\frac{-5}{2}+\frac{-5}{2}-\frac{-5}{3}+...+\frac{-5}{199}-\frac{-5}{200}\)
\(S=-5+\frac{5}{200}\)
\(S=-\frac{199}{40}\)
Bạn check lại nha, không chắc đâu =.=