Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{x-2\sqrt{x}}{x-4}=\dfrac{\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=\dfrac{\sqrt{x}}{\sqrt{x}+2}\)
Lời giải:
ĐK: \(x\geq 0; x\neq 1; x\neq 4y; y>0\)
\(B=\frac{\sqrt{x^3}}{\sqrt{y}(\sqrt{x}-2\sqrt{y})}-\frac{2x}{(x-2\sqrt{xy})+(\sqrt{x}-2\sqrt{y})}.\frac{(1-\sqrt{x})(1+\sqrt{x})}{1-\sqrt{x}}\)
\(=\frac{\sqrt{x^3}}{\sqrt{y}(\sqrt{x}-2\sqrt{y})}-\frac{2x}{(\sqrt{x}-2\sqrt{y})(\sqrt{x}+1)}.(1+\sqrt{x})\)
\(=\frac{\sqrt{x^3}}{\sqrt{y}(\sqrt{x}-2\sqrt{y})}-\frac{2x}{\sqrt{x}-2\sqrt{y}}\)
\(=\frac{\sqrt{x^3}-2x\sqrt{y}}{\sqrt{y}(\sqrt{x}-2\sqrt{y})}\)
\(=\frac{x(\sqrt{x}-2\sqrt{y})}{\sqrt{y}(\sqrt{x}-2\sqrt{y})}=\frac{x}{\sqrt{y}}\)
Em tìm điều kiện xác định của bài toán.
Sau đó bình phương hai vế lên (cả hai vế đều >0) xem ra kết quả gì?
ĐKXĐ: \(x\ge\frac{3}{2}\)
PT (=) \(\sqrt{\left(\sqrt{2x-3}+1\right)^2}+\sqrt{\left(\sqrt{2x-3}+4\right)^2}=7\)
(=) \(\sqrt{2x-3}+1+\sqrt{2x-3}+4=7\)
(=) \(2\sqrt{2x-3}=2\) (=) \(\sqrt{2x-3}=1\)(=) 2x = 4 (=) x = 2 ( Thỏa mãn điều kiện )
Vậy x=2
các biểu thức trong căn pt hết về HĐT rồi phá ra là done
\(b1:=\sqrt{2}\left(\sqrt{3}+1\right).\sqrt{2-\sqrt{3}}\\ =\left(\sqrt{3}+1\right).\sqrt{4-2\sqrt{3}}\\ =\left(\sqrt{3}+1\right).\left(\sqrt{3}-1\right)\\ =2\\ \\ b2:a,=\sqrt{\dfrac{\left(3\sqrt{5}+1\right)\left(2\sqrt{5}-3\right)}{\left(2\sqrt{5}-3\right)^2}}.\left(\sqrt{10}-\sqrt{2}\right)\\ =\dfrac{\sqrt{27-7\sqrt{5}}}{2\sqrt{5}-3}.\left(\sqrt{10}-\sqrt{2}\right)\\ =\dfrac{\sqrt{2}}{\sqrt{2}}.\dfrac{\sqrt{27-7\sqrt{5}}}{2\sqrt{5}-3}.\left(\sqrt{10}-\sqrt{2}\right)\\ =\dfrac{\sqrt{54-14\sqrt{5}}}{2\sqrt{10}-3\sqrt{2}} .\left(\sqrt{10}-\sqrt{2}\right)\\ \)\(=\dfrac{\sqrt{\left(7-\sqrt{5}\right)^2}}{2\sqrt{10}-3\sqrt{2}}.\left(\sqrt{10}-\sqrt{2}\right)\)\(\\ =\dfrac{8\sqrt{10}-12\sqrt{2}}{2\sqrt{10}-3\sqrt{2}}\\ =4\)
\(A=\sqrt{\left(x+2\right)^2+7}+\sqrt{\left(x-4\right)^2+7}\)
Dạng bài này sử dụng bất đẳng thức Mincopxki \(\sqrt{a^2+b^2}+\sqrt{c^2+d^2}\ge\sqrt{\left(a+c\right)^2+\left(b+d\right)^2}\text{ }\left(1\right)\)
Chứng minh:
\(\left(1\right)\Leftrightarrow a^2+b^2+c^2+d^2+2\sqrt{a^2+b^2}.\sqrt{c^2+d^2}\ge\left(a+c\right)^2+\left(b+d\right)^2\)
\(\Leftrightarrow\sqrt{\left(a^2+b^2\right)\left(c^2+d^2\right)}\ge ac+bd\)
\(+\text{Nếu }ac+bd< 0\text{ thì }VT\ge0>VP,\text{ bđt luôn đúng.}\)
\(\text{+Nếu }ac+bd>0\)
\(\text{bđt}\Leftrightarrow\left(a^2+b^2\right)\left(c^2+d^2\right)\ge\left(ac+bd\right)^2\)
\(\Leftrightarrow\left(ad-bc\right)^2\ge0\)
Do bđt cuối đúng nên bất đẳng thức đã cho cũng đúng.
Vậy ta có đpcm.
Dấu bằng xảy ra khi \(ad=bc\)
\(A=\sqrt{\left(x+2\right)^2+\left(\sqrt{7}\right)^2}+\sqrt{\left(4-x\right)^2+\left(\sqrt{7}\right)^2}\)
\(\ge\sqrt{\left(x+2+4-x\right)^2+\left(\sqrt{7}+\sqrt{7}\right)^2}\)
\(=\sqrt{64}=8.\)
Dấu bằng xảy ra khi \(\left(x+2\right).\sqrt{7}=\left(4-x\right).\sqrt{7}\Leftrightarrow x+2=4-x\Leftrightarrow x=1.\)
Vậy GTNN của biểu thức là 8.
\(\sqrt{\dfrac{x^2+2x+1}{16x^2}}=\sqrt{\dfrac{\left(x+1\right)^2}{16x^2}}=\dfrac{\left|x+1\right|}{4\left|x\right|}=\dfrac{1-x}{-4x}=\dfrac{x-1}{4x}\left(do.x\le-1\right)\)