Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C= \(\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\) - \(\frac{2}{\sqrt{ab}}\); \(\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2\)
= \(\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)- \(\frac{2}{\sqrt{ab}}\).: \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{ab}\)
= \(\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)-\(\frac{2\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
= \(\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
=1
#mã mã#
a) ĐKXĐ: x\(\ne\) 0;4
Ta có: Q= \(\left(\frac{4\sqrt{x}}{2+\sqrt{x}}+\frac{8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-2\right)}-\frac{2}{\sqrt{x}}\right)\)
= \(\frac{4\sqrt{x}\cdot\left(2-\sqrt{x}\right)+8x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}:\frac{\sqrt{x}-1-2\cdot\left(\sqrt{x}-2\right)}{\sqrt{x}\left(\sqrt{x}-2\right)}\)
=\(\frac{8\sqrt{x}+4x}{\left(2-\sqrt{x}\right)\left(2+\sqrt{x}\right)}\cdot\frac{\sqrt{x}\left(\sqrt{x}-2\right)}{3-\sqrt{x}}\)= \(\frac{4\sqrt{x}\cdot\left(2+\sqrt{x}\right)}{2+\sqrt{x}}\cdot\frac{-\sqrt{x}}{3-\sqrt{x}}\)=\(\frac{-4}{3-\sqrt{x}}\)=\(\frac{4}{\sqrt{x}-3}\)
b) Q=-1 => \(\frac{4}{\sqrt{x}-3}=-1\)
<=> \(4=3-\sqrt{x}\)
<=> \(\sqrt{x}=-1\) (vô lí)
Vậy ko tìm được x.
\(P=\left(\frac{2\left(\sqrt{x}+2\right)+\sqrt{x}.\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right).\frac{x+2\sqrt{x}}{2\sqrt{x}}\) điều kiện x >0
\(P=\frac{2\sqrt{x}+4+x}{x+2\sqrt{x}}.\frac{x+2\sqrt{x}}{2\sqrt{x}}\)
\(P=\frac{2\sqrt{x}+4+x}{2\sqrt{x}}=1+\frac{4+x}{2\sqrt{x}}.\)
b) P = 3
\(\Leftrightarrow1+\frac{4+x}{2\sqrt{x}}=3\Leftrightarrow\frac{4+x}{2\sqrt{x}}=2\)
\(\Leftrightarrow4+x=4\sqrt{x}\Leftrightarrow4+x-4\sqrt{x}=0\)
\(\Leftrightarrow\left(\sqrt{x}-2\right)^2=0\)
\(\Leftrightarrow\sqrt{x}-2=0\Leftrightarrow\sqrt{x}=2\Leftrightarrow x=4\)
Ngô Văn Tuyên cảm ơn bạn nha. Nhưng cho mình hỏi tí sao bạn lại tách ra thành \(1+\frac{4-x}{2\sqrt{x}}\)
giải thích hộ mình với nhé. Cảm ơn nhiều !!
a) đk: \(\hept{\begin{cases}a>b\\a< -b\end{cases}}\left(b>0\right)\) hoặc \(\hept{\begin{cases}a>-b\\a< b\end{cases}\left(b< 0\right)}\)
Ta có:
\(B=\frac{a}{\sqrt{a^2-b^2}}-\left(1+\frac{a}{\sqrt{a^2-b^2}}\right)\div\frac{b}{a-\sqrt{a^2-b^2}}\)
\(B=\frac{a}{\sqrt{a^2-b^2}}-\frac{a+\sqrt{a^2-b^2}}{\sqrt{a^2-b^2}}\cdot\frac{a-\sqrt{a^2-b^2}}{b}\)
\(B=\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-a^2+b^2}{b\sqrt{a^2-b^2}}\)
\(B=\frac{a}{\sqrt{a^2-b^2}}-\frac{b}{\sqrt{a^2-b^2}}=\frac{a-b}{\sqrt{a^2-b^2}}=\sqrt{\frac{a-b}{a+b}}\)
b) \(B< 1\Leftrightarrow\sqrt{\frac{a-b}{a+b}}< 1\Leftrightarrow\frac{a-b}{a+b}< 1\)
\(\Leftrightarrow\frac{-2b}{a+b}< 0\) ta xét 2TH:
Nếu \(b>0\Rightarrow a>-b\)
Nếu \(b< 0\Rightarrow a< -b\)
Vậy ...
Q=\(\frac{a}{\sqrt{a^2-b^2}}-\frac{\sqrt{a^2-b^2}+a}{\sqrt{a^2-b^2}}\times\frac{a-\sqrt{a^2-b^2}}{b}\)
Q=\(\frac{a}{\sqrt{a^2-b^2}}-\frac{a^2-a^2+b^2}{b\sqrt{a^2-b^2}}\)
Q= \(\frac{a+b}{\sqrt{a^2-b^2}}\)
Q=\(\frac{\sqrt{a+b}}{\sqrt{a-b}}\)