K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 11 2020

\(A=\frac{\sqrt{2}-\sqrt{1}}{\left(\sqrt{2}-\sqrt{1}\right)\left(\sqrt{2}+\sqrt{1}\right)}+\frac{\sqrt{3}-\sqrt{2}}{\left(\sqrt{3}-\sqrt{2}\right)\left(\sqrt{3}+\sqrt{2}\right)}+...+\frac{\sqrt{n}-\sqrt{n-1}}{\left(\sqrt{n}-\sqrt{n-1}\right)\left(\sqrt{n}+\sqrt{n-1}\right)}\)\(A=\sqrt{2}-\sqrt{1}+\sqrt{3}-\sqrt{2}+...+\sqrt{n}-\sqrt{n-1}\)

\(A=\sqrt{n}-\sqrt{1}\)

\(B=\frac{\sqrt{1}+\sqrt{2}}{\left(\sqrt{1}-\sqrt{2}\right)\left(\sqrt{1}+\sqrt{2}\right)}+\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{\sqrt{24}+\sqrt{25}}{\left(\sqrt{24}-\sqrt{25}\right)\left(\sqrt{24}+\sqrt{25}\right)}\)

\(B=-\left(\sqrt{1}+\sqrt{2}\right)-\left(\sqrt{2}+\sqrt{3}\right)-...-\sqrt{24}+\sqrt{25}\)

\(B=-1-2\sqrt{2}-2\sqrt{3}-...-\sqrt{24}-5\)

\(B=-1-2\sqrt{2}-2\sqrt{3}-...-\sqrt{24}-5\)

\(B=-6-2\sqrt{2}-2\sqrt{3}-...-2\sqrt{24}\)

29 tháng 11 2020

ta có \(\frac{1}{\sqrt{1}+\sqrt{2}}=\frac{\sqrt{1}-\sqrt{2}}{\left(\sqrt{1}+\sqrt{2}\right)\left(\sqrt{1}-\sqrt{2}\right)}=\frac{\sqrt{1}-\sqrt{2}}{1-2}=\sqrt{1}-\sqrt{2}\)

mấy cái kia cũng thế a

\(=>A=\left(\sqrt{2}-1\right)+\left(\sqrt{3}-2\right)+...+\left(\sqrt{n}-\sqrt{n-1}\right)\)=>A= căn n -1

19 tháng 6 2015

a, bạn chỉ cần lập công thức tông quát :

\(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

Cái này bạn chỉ cần trục căn thức ở mẫu chưng minh xong áp dụng vào luôn là ra

a, kq : 4/5

b,\(1-\frac{1}{\sqrt{n+1}}\)

c,d chưa nghĩ ra

18 tháng 6 2015

  ta có:  \(\frac{1}{\left(n+1\right)\sqrt{n}+n\sqrt{n+1}}=\frac{1}{\sqrt{\left(n+1\right)n}\left(\sqrt{n+1}+\sqrt{n}\right)}\)\(=\frac{\sqrt{n+1}-\sqrt{n}}{\sqrt{\left(n+1\right)n}}=\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\)

nên: \(\frac{1}{2\sqrt{1}+1\sqrt{2}}+\frac{1}{3\sqrt{2}+2\sqrt{3}}+...+\frac{1}{25\sqrt{24}+24\sqrt{25}}=\)

\(=\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{3}}+......+\frac{1}{\sqrt{24}}-\frac{1}{\sqrt{25}}\)\(=1-\frac{1}{5}=\frac{4}{5}\)

21 tháng 5 2017

Nhân liên hiệp ta được :

\(\frac{\sqrt{1}+\sqrt{2}}{\left(\sqrt{1}-\sqrt{2}\right)\left(\sqrt{1}+\sqrt{2}\right)}+\frac{\sqrt{2}+\sqrt{3}}{\left(\sqrt{2}-\sqrt{3}\right)\left(\sqrt{2}+\sqrt{3}\right)}+...+\frac{\sqrt{24}+\sqrt{25}}{\left(\sqrt{24}-\sqrt{25}\right)\left(\sqrt{24}+\sqrt{25}\right)}\)

\(=\frac{\sqrt{1}+\sqrt{2}}{1-2}+\frac{\sqrt{2}+\sqrt{3}}{2-3}+...+\frac{\sqrt{24}+\sqrt{25}}{24-25}\)

\(=-\sqrt{1}-\sqrt{2}-\sqrt{2}-\sqrt{3}-....-\sqrt{24}-\sqrt{25}\)

\(=-\left[\frac{\left(\sqrt{25}+\sqrt{1}\right).25}{2}+\frac{\left(\sqrt{24}+\sqrt{2}\right).23}{2}\right]\)

\(=...\)

5 tháng 7 2015

khó wa mjk mới hok thêm mấy ngày

5 tháng 7 2015

a/ Quy đồng vế phải, hình như lộn mẫu cuối là căn 2 của (n+1) mới đúng

9 tháng 10 2016

Bài 1:

Có: \(\frac{1}{\left(n+1\right)\sqrt{n}}=\frac{\sqrt{n}}{n\left(n+1\right)}=\sqrt{n}\left(\frac{1}{n}-\frac{1}{n+1}\right)=\sqrt{n}\left(\frac{1}{\sqrt{n}}+\frac{1}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

\(=\left(1+\frac{\sqrt{n}}{\sqrt{n+1}}\right)\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)< 2\left(\frac{1}{\sqrt{n}}-\frac{1}{\sqrt{n+1}}\right)\)

Có: \(\frac{1}{2\sqrt{1}}+\frac{1}{3\sqrt{2}}+\frac{1}{4\sqrt{3}}+...+\frac{1}{\left(n+1\right)\sqrt{n}}\)

xong bn áp dụng lên trên lm tiếp

9 tháng 10 2016

Bài 3:

theo bđt cô si ta có:

\(\sqrt{\frac{b+c}{a}\cdot1}\le\left(\frac{b+c}{a}+1\right):2=\frac{b+c+a}{2a}\)

=> \(\sqrt{\frac{a}{b+c}}\ge\frac{2a}{a+b+c}\)                         (1)

Tương tự ta có :

\(\sqrt{\frac{b}{a+c}}\ge\frac{2b}{a+b+c}\)                            (2)

\(\sqrt{\frac{c}{a+b}}\ge\frac{2c}{a+b+c}\)                               (3)

Cộng vế vs vế (1)(2)(3) ta có:

\(\sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{a+c}}+\sqrt{\frac{c}{a+b}}\ge\frac{2a+2b+2c}{a+b+c}=2\)